On target to halt esophageal cancer

Aspirin, other nonsteroidal anti-inflammatory drugs significantly reduce esophageal-cancer risk in people with most aggressive form of Barrett's
Drs. Xiaohong Li (left) and Brian Reid
Co-authors Drs. Xiaohong Li (left), Brian Reid and colleagues in the Seattle Barrett's Esophagus Program found that study participants with three or more biomarkers for esophageal cancer who used aspirin or other NSAIDs had a 30 percent risk of developing esophageal cancer after 10 years. Those with the same biomarkers who did not use NSAIDs had a 79 percent cancer risk during that same period. Photo by Stephanie Cartier

Researchers in the Human Biology Division have found that people with the most aggressive form of Barrett's esophagus, a precancerous condition that can lead to esophageal cancer, may benefit the most from preventive therapy with aspirin, ibuprofen and other nonsteroidal anti-inflammatory drugs, or NSAIDs. The researchers also identified a cluster of four known cancer biomarkers, or genetic abnormalities, in people with Barrett's that significantly increases their risk of developing esophageal cancer.

The findings, by lead authors Patricia Galipeau and Dr. Xiaohong Li, senior author Dr. Brian Reid, and colleagues in the Hutchinson Center-based Seattle Barrett's Esophagus Program, were published in the Feb. 27 issue of PLoS Medicine, a free online journal. The National Institutes of Health and Hutchinson Center-funded study involved collaborators from Virginia Mason Medical Center, Harvard Medical School and The Wistar Institute.

The researchers found that those with three or more of the cancer biomarkers upon enrollment in the study who also used aspirin or other NSAIDs had a 30 percent risk of esophageal cancer after 10 years, while those with the same biomarkers who did not use NSAIDs had a 79 percent risk of developing cancer within a decade of joining the study.

"This is the first prospective, longitudinal study in patients with Barrett's esophagus — or any other pre-malignant condition, for that matter — to link somatic genetic biomarkers for cancer-risk prediction with candidate interventions, such as NSAIDs, to prevent cancer," said Galipeau, a research technician in the Reid Lab.

The researchers also found that Barrett's patients whose esophageal tissue had no such genetic abnormalities upon joining the study had a 12 percent risk of developing esophageal cancer after 10 years, whereas those with three or more of the abnormalities at baseline had a nearly 80 percent risk of developing the cancer within a decade.

"Several studies have suggested that individual genetic abnormalities may identify Barrett's patients who are at increased risk of progression toward esophageal cancer, but this is the first study to evaluate the combined contribution of genetic abnormalities for esophageal cancer-risk prediction," said Reid, director of the Seattle Barrett's Esophagus Program.

The study followed 243 people with Barrett's esophagus for 10 years (189 male, 54 female, mean age 62 upon joining the study). The participants were interviewed about their medical history, diet and medication use and were closely monitored for signs of disease progression through regular endoscopies and tissue biopsies.

Participants' Barrett's-related esophageal tissue was evaluated at the initial study visit for a variety of known cancer biomarkers, but the genetic abnormalities that were most strongly predictive of progression toward cancer were:

  • Loss of heterozygosity (LOH) at 9p and 17p — a loss of genetic material on the short arms of chromosomes 17 and 9. Such chromosomal abnormalities inactivate tumor-suppressor genes that are critical for controlling cell growth.

  • DNA content abnormalities (aneuploidy and tetraploidy) — the accumulation of cells with grossly abnormal amounts of DNA, which indicates substantial genetic damage and heralds advanced progression toward cancer.

Ultimately, the researchers hope, these biomarkers one day could be used in a clinical setting to identify which Barrett's patients are most likely to develop esophageal cancer and therefore benefit from aggressive cancer surveillance via endoscopy and chemoprevention with aspirin and other NSAIDs. Galipeau and colleagues are in the process of developing such a standardized, biomarker-based screening test. The test would evaluate DNA from esophageal-tissue biopsies, but significantly fewer tissue samples would need to be collected as compared to current endoscopic-surveillance methods.

How NSAIDS work

"Once such a test is available, it could be a major factor in guiding the development of clinical trials to identify high-risk patients and definitively determine the value of NSAIDs in preventing the progression of Barrett's esophagus toward cancer," Reid said.

It is hypothesized that aspirin and other NSAIDs may fight cancer by reducing chronic inflammation, which is a driving force behind the development of many cancers and other diseases. Specifically, NSAIDs have been shown to inhibit the production of the cyclooxygenase-2 (COX-2) enzyme. Disruption of this pathway slows the growth of abnormal cells and facilitates the normal process of programmed cell death, or apoptosis, both of which can thwart cancer development. NSAIDs are also believed to decrease proliferation of cells and decrease the growth of blood vessels that supply blood to tumors, Reid said.

The annual incidence of esophageal cancer among Barrett's esophagus patients is about 1 percent — most patients never get the cancer. However, the outlook is grim if the cancer is not diagnosed early, with an overall survival rate of only 13.7 percent. For this reason, Barrett's patients must undergo frequent endoscopic surveillance.

"Many Barrett's patients are subjected to overdiagnosis of risk and overtreatment," Reid said. "These findings ultimately may help us identify high-risk patients who truly require frequent surveillance and low-risk patients who need no or less-frequent surveillance. For example, low-risk patients with no biomarker abnormalities at baseline had a zero percent cumulative risk of developing esophageal cancer for nearly eight years," he said. "These findings also may help us determine which Barrett's patients may benefit most from a very cost-effective, noninvasive therapy in the form of aspirin or NSAIDs."

Currently, the recommended endoscopic screening frequency for Barrett's esophagus ranges from once every three to six months to once every two to three years, depending on the amount of affected tissue and the degree of dysplasia, or cellular abnormality, detected upon examining a tissue sample under a microscope. While analysis of cellular dysplasia is the most common method for determining the severity, or grade, of Barrett's, several recent studies have found that the technique is not truly predictive of cancer risk. Longitudinal studies of high-risk Barrett's patients (as determined by degree of cellular dysplasia) have found cancer-incidence rates ranging from 8 percent to 59 percent.

"Clearly we need a new, more consistent and reliable way to predict risk that doesn't rely on the subjective interpretation of a pathologist," said Reid, also a professor of gastroenterology and medicine and an adjunct professor of genome sciences at the University of Washington School of Medicine.

About Barrett's esophagus

An estimated 20 million Americans experience chronic heartburn; about 2 million of these people have Barrett's esophagus, a premalignant condition of the tube that carries food from the mouth to the stomach. While the condition is most prevalent in middle-aged white men, the incidence of esophageal adenocarcinoma, the cancer associated with Barrett's esophagus, is rising in women and African Americans.

A physician may suspect the condition is present if part of the inner lining, or epithelium, of the esophagus is red rather than the usual light pink. This is determined through a procedure called endoscopy, in which a tube-like instrument is used to view the esophageal lining. A definite diagnosis cannot be made unless small samples of the red lining are biopsied, or removed and examined under a microscope, and found to have cellular changes typical of this disorder. Barrett's-related esophageal cancer strikes about 10,000 Americans a year, and for unknown reasons, the incidence is rising faster than that of any other cancer in the United States. Barrett's-related cancers increased fourfold between 1973 and 2002, with a nearly fivefold increase in white males. More than 90 percent of patients with invasive esophageal adenocarcinoma die within five years of diagnosis.

The Seattle Barrett's Esophagus Program

The Seattle Barrett's Esophagus Program is a multidisciplinary research effort based at Fred Hutchinson Cancer Research Center and conducted in collaboration with researchers at the University of Washington, The Wistar Institute, Harvard Medical School and Virginia Mason Medical Center. The goals of the program are to understand the biological mechanisms by which esophageal cancer develops, to identify lifestyle and other factors that promote or inhibit progression toward cancer, and to identify genetic markers of increased risk so the disease can be prevented or detected early, while it is still curable.

The Barrett's research team has shown that a systematic, multidisciplinary approach to early cancer detection can boost the five-year survival rate for esophageal cancer from about 10 percent to more than 80 percent. The Seattle team's findings also suggest that reducing obesity and quitting smoking may prevent progression of Barrett's.

To learn more about the program, visit http://seattle.barrettsresearch.org. For more information about Barrett's esophagus, visit www.barrettsinfo.com. This peer-reviewed Web site developed by researchers at the Hutchinson Center and University of Washington receives support from AstraZeneca LP through an unrestricted educational-research grant from the Ryan Hill Research Foundation in Seattle.

Help Us Eliminate Cancer

Every dollar counts. Please support lifesaving research today.