Basic Sciences Publications

Search and Filter
Results per Page:
  • 5
  • 10
  • 20
  • 50
  • 100

Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis

Nature

2019 Bradley, Robert K, PhD Robert Bradley

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.

Nucleosomes remember where they were

Proceedings of the National Academy of Sciences of the United States of America

2019 Henikoff, Steven, PhD Steven Henikoff

N/A

PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation

Nature communications

2019 Moens, Cecilia B, PhD Cecilia B Moens

Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation.

FliC's Hypervariable D3 Domain Is Required for Robust Anti-Flagellin Primary Antibody Responses

Immunohorizons

2019 Strong, Roland K, PhD Roland K Strong

Bacterial flagellin is a well-known agonist of the innate immune system that induces proinflammatory responses through the TLR5 and Naip5/6 recognition pathways. Several clinical trials investigating flagellin fusion proteins have demonstrated promising results for inducing protective immunity toward influenza virus, which has been largely attributed to flagellin's ability to activate TLR5. Our laboratory previously demonstrated that the Salmonella enterica serovar Typhimurium flagellin protein, FliC, induces Ab responses in mice through a third pathway that is independent of TLR5, Casp1/11, and MyD88. In this study, we further define the structural features of FliC that contribute to this unknown third pathway. By destroying the Naip5/6 and TLR5 recognition sites, we demonstrate that neither were required for the TLR5-, inflammasome- and MyD88-independent Ab responses toward FliC. In contrast, deletion of FliC's D3 or D0/D1 domains eliminated primary anti-flagellin Ab responses. For optimal primary and secondary anti-flagellin Ab responses we show that TLR5, inflammasome recognition, and the D3 domain of FliC are essential for flagellin's robust immunogenicity. Our data demonstrate that the D3 domain of FliC influences immunogenicity independent of the known innate recognition sites in the D0/D1 domains to augment Ab production. Our results suggest full-length FliC is critical for optimal immunogenicity and Ab responses in flagellin-based vaccines.

In vivo measurements reveal a single 5 '-intron is sufficient to increase protein expression level in Caenorhabditis elegans

Scientific Reports

2019 Brent, Roger, PhD Roger Brent

Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.

Disentangling strictly self-serving mutations from win-win mutations in a mutualistic microbial community

eLife

2019 Shou, Wenying, PhD Wenying Shou

Mutualisms can be promoted by pleiotropic win-win mutations which directly benefit self (self-serving) and partner (partner-serving). Intuitively, partner-serving phenotype could be quantified as an individual's benefit supply rate to partners. Here, we demonstrate the inadequacy of this thinking, and propose an alternative. Specifically, we evolved well-mixed mutualistic communities where two engineered yeast strains exchanged essential metabolites lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, a chromosome duplication mutation seemed win-win: it improved cell's affinity for lysine (self-serving), and increased hypoxanthine release rate per cell (partner-serving). However, increased release rate was due to increased cell size accompanied by increased lysine utilization per birth. Consequently, total hypoxanthine release rate per lysine utilization (defined as 'exchange ratio') remained unchanged. Indeed, this mutation did not increase the steady state growth rate of partner, and is thus solely self-serving during long-term growth. By extension, reduced benefit production rate by an individual may not imply cheating.

The generation of granule cells during the development and evolution of the cerebellum

Developmental dynamics : an official publication of the American Association of Anatomists

2019 Moens, Cecilia B, PhD Cecilia B Moens

The cerebellum co-ordinates vestibular input into the hindbrain to control balance and movement, and its anatomical complexity is increasingly viewed as a high throughput-processing centre for sensory and cognitive functions. Cerebellum development however is relatively simple, and arises from a specialized structure in the anterior hindbrain called the rhombic lip, which along with the ventricular zone of the rostral-most dorsal hindbrain region, give rise to the distinct cell types that constitute the cerebellum. Granule cells, being the most numerous cell types, arise from the rhombic lip and form a dense and distinct layer of the cerebellar cortex. In this short review, we describe the various strategies used by amniotes and anamniotes to generate and diversify granule cell types during cerebellar development. This article is protected by copyright. All rights reserved.

Unraveling quiescence-specific repressive chromatin domains

Current genetics

2019 Tsukiyama, Toshio, PhD, DVM Toshio Tsukiyama

Quiescence is a highly conserved inactive life stage in which the cell reversibly exits the cell cycle in response to external cues. Quiescence is essential for diverse processes such as the maintenance of adult stem cell stores, stress resistance, and longevity, and its misregulation has been implicated in cancer. Although the non-cycling nature of quiescent cells has made obtaining sufficient quantities of quiescent cells for study difficult, the development of a Saccharomyces cerevisiae model of quiescence has recently enabled detailed investigation into mechanisms underlying the quiescent state. Like their metazoan counterparts, quiescent budding yeast exhibit widespread transcriptional silencing and dramatic chromatin condensation. We have recently found that the structural maintenance of chromosomes (SMC) complex condensin binds throughout the quiescent budding yeast genome and induces the formation of large chromatin loop domains. In the absence of condensin, quiescent cell chromatin is decondensed and transcription is de-repressed. Here, we briefly discuss our findings in the larger context of the genome organization field.

Microbial coexistence through chemical-mediated interactions

Nature communications

2019 Shou, Wenying, PhD Wenying Shou

Many microbial functions happen within communities of interacting species. Explaining how species with disparate growth rates can coexist is important for applications such as manipulating host-associated microbiota or engineering industrial communities. Here, we ask how microbes interacting through their chemical environment can achieve coexistence in a continuous growth setup (similar to an industrial bioreactor or gut microbiota) where external resources are being supplied. We formulate and experimentally constrain a model in which mediators of interactions (e.g. metabolites or waste-products) are explicitly incorporated. Our model highlights facilitation and self-restraint as interactions that contribute to coexistence, consistent with our intuition. When interactions are strong, we observe that coexistence is determined primarily by the topology of facilitation and inhibition influences not their strengths. Importantly, we show that consumption or degradation of chemical mediators moderates interaction strengths and promotes coexistence. Our results offer insights into how to build or restructure microbial communities of interest.

Determinants of Zika virus host tropism uncovered by deep mutational scanning

Nature Microbiology

2019 Bloom, Jesse D, PhD Jesse Bloom

Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates(1). The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy(2-5) whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.