But stents inserted into a tumor may in turn become blocked as the tumor grows. First, Stephan tested whether CAR T cells could help keep thin-film stents open in pancreatic tumors growing in a lab dish. After 10 days, all stents without T cells were obstructed with tumor cells. Of the stents loaded with T cells, 53% were completely clear and the rest had only minor tumor-cell ingrowth.
Then, the team also tested the CAR T cell-enhanced stents in mice implanted with pancreatic tumor cells. After three weeks, all stents without T cells were over 99% blocked; T cell-loaded stents only showed an average of 30% tumor-cell ingrowth.
The team also examined how Stephan’s T-cell delivery strategy worked with the Nitinol thin films in mice with inoperable ovarian cancer. In about 40% of patients with advanced ovarian cancer whose cancer has spread to their abdominal cavity, tumors grow into the diaphragm and can’t be removed, which impairs patients’ breathing. Patients often undergo what’s known as a debulking procedure, in which as much of the tumor surface is scraped away, though the tumor itself is not cut out.
Stephan and his team tested whether CAR T cell-loaded thin films could be used to shrink tumor tissue that remains after debulking. They compared the efficacy of four different treatment types: IV-infused anti-cancer CAR T cells, anti-cancer CAR T cells injected directly into tumors, thin films loaded with anti-cancer CAR T cells, and thin films loaded with T cells that had no cancer specificity.
Untreated mice survived an average of 30 days. IV-infused anti-cancer CAR T cells extended average survival to 40 days but didn’t shrink tumors. Anti-cancer CAR T cells injected directly into the tumors extended survival to 50 days but also did not shrink tumors. Thin film-delivered non-specific T cells extended survival to 38 days.
In contrast, thin film-delivered anti-cancer CAR T cells cleared tumors in seven of 10 mice and slowed tumor growth in the other three. This treatment extended average survival to 80 days.
A vision for off-the-shelf immunotherapy
Stephan envisions using immune-cell delivering implants in a variety of applications: to prevent recurrence after tumor-removal surgery, on inoperable tumors to shrink or even clear them, and to improve current treatment strategies, such as the CAR-loaded tumor stents tested in this study.
“Ideally, these implants would be functionalized with T cells ahead of time so that they would be off-the-shelf products,” he said.
The strategy also has potential beyond T cells, he said. Researchers are experimenting with other immune cells, including macrophages and natural killer cells, which could be delivered to tumors in a similar fashion.
Stephan’s work shows how the micromesh’s characteristics can improve on the sponge-based delivery strategy he first tested. The ability to load a precise dose of T cells onto thin films would make for a more standardized off-the-shelf product, and T cells sitting on the surface of the Nitinol thin films move into the tumor more easily than those within the sponge. The thin films are also less fragile and therefore easier for a surgeon to place than the sponge, he said.
Stephan’s previous work showed that implant-delivered, activated CAR T cells spread deep into tumor tissue and even throughout the body. Because of this, he believes that adding CAR T cells to stents could theoretically do more than keep the stents open.
A CAR T cell-loaded stent could be “a potentially curative therapy,” he said. Chemotherapy delivered by stent only penetrates a few millimeters into the surrounding tumor, Stephan noted. “In our case we're sending out the troops [in the form of CAR T cells] and they actively penetrate deep, deep into the tissue.”
As long as cutting-edge ideas remain in the lab, they remain fiction. CAR T cells that never reach tumors will never fulfill their cancer-killing potential. With his science, Stephan hopes to turn ideas into effective, real-life cancer therapies.
Fred Hutch, Monarch Biosciences and the Bezos family funded this work.