Scientific Publications

Search and Filter
Filter by type Filter by type
Filter by research area Filter by research area
Results per Page:
  • 5
  • 10
  • 20
  • 50
  • 100

A Transcriptome-Wide Association Study (TWAS) Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer

J Natl Cancer Inst

2020 Peters, Ulrike; Thornquist, Mark D; White, J; Goodman, Gary E; Goodman, Phyllis J; Kooperberg, Charles L

BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies (GWAS) in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study (TWAS) in Europeans using three approaches, FUSION, MetaXcan and SMulTiXcan. We integrated GWAS summary statistics from 9,040 pancreatic cancer cases and 12,496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics, LTG (n=95) and Genotype-Tissue Expression, GTEx v7 (n=174) datasets), and data from 48 different tissues (GTEx v7, n=74-421 samples). RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (FDR < 0.05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12:, PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at 6 known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci, and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1 and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

Association Between 21-Gene Assay Recurrence Score and Locoregional Recurrence Rates in Patients With Node-Positive Breast Cancer

JAMA Oncol

2020 Davidson, Nancy E; Barlow, William E; Gralow, Julie R

Importance: The 21-gene assay recurrence score is increasingly used to personalize treatment recommendations for systemic therapy in postmenopausal women with estrogen receptor (ER)- or progesterone receptor (PR)-positive, node-positive breast cancer; however, the relevance of the 21-gene assay to radiotherapy decisions remains uncertain. Objective: To examine the association between recurrence score and locoregional recurrence (LRR) in a postmenopausal patient population treated with adjuvant chemotherapy followed by tamoxifen or tamoxifen alone. Design, Setting, and Participants: This cohort study was a retrospective analysis of the Southwest Oncology Group S8814, a phase 3 randomized clinical trial of postmenopausal women with ER/PR-positive, node-positive breast cancer treated with tamoxifen alone, chemotherapy followed by tamoxifen, or concurrent tamoxifen and chemotherapy. Patients at North American clinical centers were enrolled from June 1989 to July 1995. Medical records from patients with recurrence score information were reviewed for LRR and radiotherapy use. Primary analysis included 316 patients and excluded 37 who received both mastectomy and radiotherapy, 9 who received breast-conserving surgery without documented radiotherapy, and 5 with unknown surgical type. All analyses were performed from January 22, 2016, to August 9, 2019. Main Outcomes and Measures: The LRR was defined as a recurrence in the breast; chest wall; or axillary, infraclavicular, supraclavicular, or internal mammary lymph nodes. Time to LRR was tested with log-rank tests and Cox proportional hazards regression for multivariate models. Results: The final cohort of this study comprised 316 women with a mean (range) age of 60.4 (44-81) years. Median (interquartile range) follow-up for those without LRR was 8.7 (7.0-10.2) years. Seven LRR events (5.8%) among 121 patients with low recurrence score and 27 LRR events (13.8%) among 195 patients with intermediate or high recurrence score occurred. The estimated 10-year cumulative incidence rates were 9.7% for those with a low recurrence score and 16.5% for the group with intermediate or high recurrence score (P=.02). Among patients who had a mastectomy without radiotherapy (n=252), the differences in the 10-year actuarial LRR rates remained significant: 7.7 % for the low recurrence score group vs 16.8% for the intermediate or high recurrence score group (P=.03). A multivariable model controlling for randomized treatment, number of positive nodes, and surgical type showed that a higher recurrence score was prognostic for LRR (hazard ratio [HR],2.36; 95% CI, 1.02-5.45; P=.04). In a subset analysis of patients with a mastectomy and 1 to 3 involved nodes who did not receive radiation therapy, the group with a low recurrence score had a 1.5% rate of LRR, whereas the group with an intermediate or high recurrence score had a 11.1% LRR (P=.051). Conclusions and Relevance: This study found that higher recurrence scores were associated with increased LRR after adjustment for treatment, type of surgical procedure, and number of positive nodes. This finding suggests that the recurrence score may be used, along with accepted clinical variables, to assess the risk of LRR during radiotherapy decision-making.

Endothelial activation, innate immune activation, and inflammation are associated with post-bronchodilator airflow limitation and obstruction among adolescents living with HIV

J Acquir Immune Defic Syndr

2020 Richardson, Barbra A; Chung, Michael H; Crothers, Kristina; Graham, Susan M; Triplette, Matthew A

BACKGROUND: Chronic inflammation, innate immune activation, T-cell imbalance and endothelial activation have been linked with lung diseases. We sought to determine whether markers of these pathophysiologic pathways were associated with spirometry and chest CT abnormalities among adolescents living with HIV (ALWH). SETTING: Coptic Hope Center for Infectious Diseases in Nairobi, Kenya METHODS:: We performed a cross-sectional study of ALWH (10-19 years old). Participants underwent chest CT, spirometry and venipuncture for serum biomarkers. We also collected demographic, anthropometric, T-cell subset, antiretroviral therapy, and exposure data. We compared characteristics and biomarkers by airflow obstruction (post-bronchodilator FEV1/FVC z-score [zFEV1/FVC] < -1.64). We used multivariable linear regression to determine associations of log10-transformed biomarkers and chest CT abnormalities with lower post-bronchodilator zFEV1/FVC (airflow limitation). We performed exploratory principal components analysis on biomarkers, and determined associations of factors with post-bronchodilator zFEV1/FVC and chest CT abnormalities. RESULTS: Of 47 participants with acceptable quality spirometry, 21 (45%) were female, median age was 13 years and 96% had perinatally-acquired HIV. Median CD4 was 672 cells/L. Overall, 28% had airflow obstruction and 78% had a chest CT abnormality; airflow obstruction was associated with mosaic attenuation (p=0.001). Higher endothelial activation (sVCAM-1, sICAM-1), inflammation and innate immune activation (SAA, sTREM-1, sCD163), and T-cell imbalance (lower CD4/CD8) markers were associated with airflow limitation. Factors comprising endothelial and innate immune activation were associated with airflow limitation. CONCLUSIONS: Endothelial activation, innate immune activation, T-cell imbalance, and chronic inflammation are associated with airflow limitation and obstruction, providing insights into chronic lung disease pathophysiology among ALWH.

Inhibitory Interplay of SULT2B1b Sulfotransferase with AKR1C3 Aldo-keto Reductase in Prostate Cancer

Endocrinology

2020 Morrissey, Colm M; Mostaghel, Elahe A; Matsumoto, Alvin M

SULT2B1b (SULT2B) is a prostate-expressed hydroxysteroid sulfotransferase, which may regulate intracrine androgen homeostasis by mediating 3β-sulfation of DHEA, the precursor for DHT biosynthesis. The aldo-keto reductase AKR1C3 regulates androgen receptor (AR) activity in castration-resistant prostate cancer (CRPC) by promoting tumor-tissue androgen biosynthesis from adrenal DHEA and also by functioning as an AR-selective coactivator. Herein we report that SULT2B-depleted CRPC cells, arising from stable RNA interference or gene knockout, are markedly upregulated for AKR1C3, activated for ERK1/2 survival signal, and induced for epithelial-to-mesenchymal(EMT)-like changes. EMT was evident from increased mesenchymal proteins and elevated EMT-inducing transcription factors SNAI1 and TWIST1 in immunoblot and single-cell mass cytometry analyses. SULT2B-knockout cells showed greater motility and invasion in vitro; growth escalation in xenograft study; and enhanced metastatic potential predicted on the basis of decreased cell stiffness and adhesion revealed from atomic force microscopy analysis. While AR and androgen levels were unchanged, AR activity was elevated, since PSA and FKBP5 mRNA induction by DHT-activated AR was several-fold higher in SULT2B-silenced cells. AKR1C3 silencing prevented ERK1/2 activation and SNAI1 induction in SULT2B-depleted cells. SULT2B was undetectable in nearly all CRPC metastases from fifty autopsy cases. Primary tumors showed variable and Gleason score independent SULT2B levels. CRPC metastases lacking SULT2B expressed AKR1C3. Since AKR1C3 is frequently elevated in advanced prostate cancer, the inhibitory influence of SULT2B on AKR1C3 upregulation, ERK1/2 activation, EMT-like induction and on cell motility and invasiveness may be clinically significant. Pathways regulating the inhibitory SULT2B-AKR1C3 axis may inform new avenue(s) for targeting SULT2B-deficient prostate cancer.

Life Expectancy of Adult Survivors of Childhood Cancer Over 3 Decades

JAMA Oncol

2020 Leisenring, Wendy M

Importance: Advances in childhood and adolescent cancer treatment have been associated with increased rates of cure during the past 3 decades; however, improvement in adult life expectancy for these individuals has not yet been reported. Objectives: To project long-term survival and assess whether life expectancy will improve among adult survivors of childhood cancer who were treated in more recent decades. Design, Setting, and Participants: A microsimulation model of competing mortality risks was developed using data from the Childhood Cancer Survivor Study on 5-year survivors of childhood cancer diagnosed between 1970 and 1999. The model included (1) late recurrence, (2) treatment-related late effects (health-related [subsequent cancers, cardiac events, pulmonary conditions, and other] and external causes), and (3) US background mortality rates. Exposures: Treatment subgroups (no treatment or surgery only, chemotherapy alone, radiotherapy alone, and radiotherapy with chemotherapy) and individuals with acute lymphoblastic leukemia during childhood by era (1970-1979, 1980-1989, and 1990-1999). Main Outcomes and Measures: Conditional life expectancy (defined as the number of years a 5-year survivor can expect to live), cumulative cause-specific mortality risk, and 10-year mortality risks conditional on attaining ages of 30, 40, 50, and 60 years. Results: Among the hypothetical cohort of 5-year survivors of childhood cancer representative of the Childhood Cancer Survivor Study participants (44% female and 56% male; mean [SD] age at diagnosis, 7.3 [5.6] years), conditional life expectancy was 48.5 years (95% uncertainty interval [UI], 47.6-49.6 years) for 5-year survivors diagnosed in 1970-1979, 53.7 years (95% UI, 52.6-54.7 years) for those diagnosed in 1980-1989, and 57.1 years (95% UI, 55.9-58.1 years) for those diagnosed in 1990-1999. Compared with individuals without a history of cancer, these results represented a gap in life expectancy of 25% (95% UI, 24%-27%) (16.5 years [95% UI, 15.5-17.5 years]) for those diagnosed in 1970-1979, 19% (95% UI, 17%-20%) (12.3 years [95% UI, 11.3-13.4 years]) for those diagnosed in 1980-1989, and 14% (95% UI, 13%-16%) (9.2 years [95% UI, 8.3-10.4 years]) for those diagnosed in 1990-1999. During the 3 decades, the proportion of survivors treated with chemotherapy alone increased (from 18% in 1970-1979 to 54% in 1990-1999), and the life expectancy gap in this chemotherapy-alone group decreased from 11.0 years (95% UI, 9.0-13.1 years) to 6.0 years (95% UI, 4.5-7.6 years). In contrast, during the same time frame, only modest improvements in the gap in life expectancy were projected for survivors treated with radiotherapy (21.0 years [95% UI, 18.5-23.2 years] to 17.6 years [95% UI, 14.2-21.2 years]) or with radiotherapy and chemotherapy (17.9 years [95% UI, 16.7-19.2 years] to 14.8 years [95% UI, 13.1-16.7 years]). For the largest group of survivors by diagnosis-those with acute lymphoblastic leukemia-the gap in life expectancy decreased from 14.7 years (95% UI, 12.8-16.5 years) in 1970-1979 to 8.0 years (95% UI, 6.2-9.7 years). Conclusions and Relevance: Evolving treatment approaches are projected to be associated with improved life expectancy after treatment for pediatric cancer, in particular among those who received chemotherapy alone for their childhood cancer diagnosis. Despite improvements, survivors remain at risk for shorter lifespans, especially when radiotherapy was included as part of their childhood cancer treatment.

Identification of Cell Surface Targets for CAR T Cell Immunotherapy

Methods Mol Biol

2020 Lee, John K; DeLucia, Diana Campbell

Immunotherapy has become a prominent approach for the treatment of cancer. Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in oncology. However, the identification of cell surface antigens unique to tumor cells against which CAR T cells can be engineered has historically been challenging and not well documented in solid tumors. Here, we describe a generalized method to construct a cell subtype-specific surface antigen profile (i.e., surfaceome) from cell lines and identify high-confidence antigens as effective targets for CAR T cell therapy by integrating transcriptomics and cell surface proteomics. This method is widely applicable to all therapies utilizing CAR T cells, such as cancer, as well as infectious and autoimmune diseases.

Head and Neck Cancer

N Engl J Med

2020 Chow, Laura

N/A

Stigma, Implicit Bias, and Long-Lasting Prevention Interventions to End the Domestic HIV/AIDS Epidemic

Am J Public Health

2020 Wallace, Stephaun E; Rentas, Francisco E; Oseso, Linda N; Andrasik, Michele Peake; Broder, Gail B; Corey, Larry L

N/A

The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines

Methods Mol Biol

2020 Koelle, David M

DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.

Mammalian Surface Display Screening of Diverse Cystine-Dense Peptide Libraries for Difficult-to-Drug Targets

Methods Mol Biol

2020 Sevilla, Gregory P; Olson, James M; Mhyre, Andrew J; Crook, Zachary R

Many diseases are mediated by targets that are not amenable to conventional small-molecule drug approaches. While antibody-based drugs have undeniable utility, peptides of the 1-9 kDa size range (10-80 amino acids) have drawn interest as alternate drug scaffolds This is born of a desire to identify compounds with the advantages of antibody-based therapeutics (affinity, potency, specificity, and ability to disrupt protein:protein interactions) without all of their liabilities (large size, expensive manufacturing, and necessity of humanization). Of these alternate scaffolds, cystine-dense peptides (CDPs) have several specific benefits. Due to their stable intra-chain disulfide bridges, CDPs often demonstrate resistance to heat and proteolysis, along with low immunogenicity. These properties do not require chemical modifications, permitting CDP screening by conventional genetic means. The cystine topology of a typical CDP requires an oxidative environment, and we have found that the mammalian secretory pathway is most effective at allowing diverse CDPs to achieve a stable fold. As such, high-diversity screens to identify CDPs that interact with targets of interest can be efficiently conducted using mammalian surface display. In this protocol, we present the theory and tools to conduct a mammalian surface display screen for CDPs that bind with targets of interest, including the steps to validate binding and mature the affinity of preliminary candidates. With these methods, CDPs of all kinds can be brought to bear against targets that would benefit from a peptide-based intervention.

Last Modified,