Overcoming hurdle clears the way for tumors
Jana used various methods to confirm that translational-transcriptional conflict suppresses tumor formation. Notably, she found that a bladder cancer-promoting compound in cigarette smoke, called BBN (for N-butyl-N-(4-hydroxybutyl)nitrosamine), boosts the levels of the protein machine component blocked by ARID1A loss, which leads to an uptick in protein production.
This suggested that BBN could help cells get over the hurdle posed by transcriptional-translational conflict. They were right: dosing mice with BBN prior to deleting ARID1A balanced translation and unleashed the pro-cancer potential lurking in the genes turned on without ARID1A. Tumors grew and progressed more quickly in BBN-treated mice lacking ARID1A than in mice that retained the gene.
Jana saw that bladder tumors from people also appeared to have overcome the conflict. Tumors with low levels of ARID1A protein were more likely to have evidence of higher protein production — suggesting that, like the BBN-caused tumors in the mice, these tumors had evolved strategies to overcome transcriptional-translational conflict. And ARID1A mutations in bladder tumors don’t show up alone; they’re usually accompanied by changes in genes that regulate RNA translation.
“Because cancer is so smart, it's devised ways around this (transcriptional-translational conflict),” Hsieh said. “It’s figured out, ‘Okay, if I just boost up translation first, then this whole problem is gone.’”
A new therapeutic vulnerability
But what if scientists could make this “conflict” a problem again for bladder tumors? Hsieh and Jana saw an opportunity to reinstall the emergency brake.
Jana used a compound called homoharringtonine, or HHT, which blocks RNA translation. A clinical version of HHT, called omacetaxine mepesuccinate, has already been approved by the Federal Drug Administration to treat chronic myeloid leukemia. Jana used tissue from BBN-induced tumors to create 3D dish-based tumor models called organoids. HHT slowed the growth of organoids missing ARID1A at concentrations that didn’t stop organoids with normal ARID1A from growing. She saw similar results in bladder cancer cells taken from human tumors.
Jana then turned to patient-derived xenografts, or PDXs, models of bladder cancer. In PDX bladder cancer models, tumor tissue from patients with bladder cancer is grown in mice. Jana tested HHT against PDX lines with high, medium or low levels of ARID1A protein. HHT decreased tumor growth by 59% in PDX model with low levels of ARID1A and by 36% in the model with moderate levels of ARID1A, but did not affect tumor growth in the PDX line with high levels of the protein.
Next steps: more biology, clinical application
“This work shows that there is a dynamic interplay between transcription and translation that's actually functional,” Hsieh said. “And this is the first, we think, of many examples that will be discovered.”
ARID1A appears to act as a tumor suppressor elsewhere, but it’s not yet known whether tissues like the ovary and liver also rely on transcriptional-translational conflict as an emergency brake, he said. Hsieh’s team is developing technologies to delve even deeper into the phenomenon and the potential importance of translation speed in cancer.
“The paper really expands our understanding of basic cancer biology, but also it provides a potential therapeutic window — or a deeper understanding — of how we could use this genomic alteration (in ARID1A) as a foothold for treating patients with advanced disease,” Hsieh said.
This work was supported by the National Institutes of Health, the U.S. Department of Defense Prostate Cancer Research Program, the Bladder Cancer Advocacy Network, the Kleberg Foundation, the Burroughs Wellcome Fund, the Thomas & Patricia Wright Memorial Fund, Nancy & Dick Bernheimer, the Matthews Family and the Stinchcomb Family.