Immunology and Vaccine Development Publications

Search and Filter
Last Modified, November 29, 2020
Results per Page: 10
  • 5
  • 10
  • 20
  • 50
  • 100

Antibody Binding to SARS-CoV-2 S Glycoprotein Correlates with but Does Not Predict Neutralization


2020 Marie Pancera; Andrew McGuire; Leonidas Stamatatos

Convalescent plasma from SARS-CoV-2 infected individuals and monoclonal antibodies were shown to potently neutralize viral and pseudoviral particles carrying the S glycoprotein. However, a non-negligent proportion of plasma samples from infected individuals, as well as S-specific monoclonal antibodies, were reported to be non-neutralizing despite efficient interaction with the S glycoprotein in different biochemical assays using soluble recombinant forms of S or when expressed at the cell surface. How neutralization relates to the binding of S glycoprotein in the context of viral particles remains to be established. Here, we developed a pseudovirus capture assay (VCA) to measure the capacity of plasma samples or antibodies immobilized on ELISA plates to bind to membrane-bound S glycoproteins from SARS-CoV-2 expressed at the surface of lentiviral particles. By performing VCA, ELISA, and neutralization assays, we observed a strong correlation between these parameters. However, while we found that plasma samples unable to capture viral particles did not neutralize, capture did not guarantee neutralization, indicating that the capacity of antibodies to bind to the S glycoprotein at the surface of pseudoviral particles is required but not sufficient to mediate neutralization. Altogether, our results highlight the importance of better understanding the inactivation of S by plasma and neutralizing antibodies.

Maternal Epstein-Barr virus-specific antibodies and risk of infection in Ugandan infants

J Infect Dis

2020 Jackson Orem; Corey Casper; Elizabeth Krantz; Meei-Li Huang; Andrew McGuire; Anton Sholukh; Abigail Wall; Soren Gantt

BACKGROUND: Epstein-Barr virus (EBV) infection is a major cause of malignancy worldwide. Maternal antibody is thought to prevent EBV infection because it is uncommon in early infancy. Maternal HIV infection is associated with an increased incidence of EBV infection in exposed infants, which we hypothesized results from impaired transfer of EBV-neutralizing maternal antibodies. METHODS: Among Ugandan infants followed for EBV acquisition from birth, we measured antibody binding to EBV glycoproteins (e.g., gp350, gH/gL) involved in B cell and epithelial cell entry, as well as viral neutralization and antibody-dependent cellular cytotoxicity (ADCC) activity in plasma samples prior to infection. These serologic data were analyzed for differences between HIV-exposed uninfected (HEU) and unexposed (HUU) infants, and for associations with incident infant EBV infection. RESULTS: HEU infants had significantly higher titers than HUU infants for all EBV-binding and neutralizing antibodies measured (p<0.01), but not ADCC activity, which was similar between groups. No antibody measure was associated with a decreased risk of EBV acquisition in the cohort. CONCLUSIONS: Our findings indicate that in this cohort maternal antibody did not protect infants against EBV infection through viral neutralization. The identification of protective non-neutralizing antibody functions would be invaluable for the development of an EBV vaccine.

Use of adenovirus type-5 vectored vaccines: a cautionary tale


2020 Larry Corey; Julie McElrath


Generation of a cost-effective cell line for support of high-throughput isolation of primary human B cells and monoclonal neutralizing antibodies

J Immunol Methods

2020 Julie McElrath; Tanvi Arkatkar; Joseph Carter; Andrew McGuire; Aaron Seese; David Rawlings; Kristen Cohen; Sarah Ameny; Rachael Nelson; Denise Galloway; Abigail Wall

The isolation of human monoclonal antibodies (mAbs) arising from natural infection with human pathogens has proven to be a powerful technology, facilitating the understanding of the host response to infection at a molecular level. mAbs can reveal sites of vulnerability on pathogens and illuminate the biological function of the antigenic targets. Moreover, mAbs have the potential to be used directly for therapeutic applications such as passive delivery to prevent infection in susceptible target populations, and as treatment of established infection. The isolation of antigen-specific B cells from vaccine trials can also assist in deciphering whether the desired B cells are being targeted by a given vaccine. Several different processes have been developed to isolate mAbs, but all are generally labor-intensive and result in varying degrees of efficiency. Here, we describe the development of a cost-effective feeder cell line that stably expresses CD40-ligand, interleukin-2 and interleukin-21. Sorting of single B cells onto a layer of irradiated feeder cells sustained antibody production that permits functional screening of secreted antibodies in a manner that enables subsequent recovery of B cells for recombinant antibody cloning. As a proof of concept, we show that this approach can be used to isolate B cells that secrete antibodies that neutralize human papilloma virus (HPV) from participants of an HPV vaccine study.

Antimalarial antibody repertoire defined by plasma IG proteomics and single B cell IG sequencing

JCI Insight

2020 Justin Taylor

Plasma antimalarial antibody can mediate anti-parasite immunity but has not previously been characterized at the molecular level. Here, we develop an innovative strategy to characterize humoral responses by integrating profiles of plasma immunoglobulins (IG) or antibodies with those expressed on B cells as part of BcR. We applied this strategy to define plasma IG and determine variable V gene usage after vaccination with the Plasmodium falciparum zygote antigen Pfs25. First, using proteomic tools coupled with bulk immunosequencing data, we determined human F(ab')2 peptide sequences from plasma IG of adults who received four doses of Pfs25-EPA/Alhydrogel. Specifically, Pfs25 antigen-specific F(ab')2 peptides (Pfs25-IG) were aligned to cDNA sequences of IGH complementarity determining region 3 (CDR3) from a dataset generated by total peripheral B cell immunosequencing of the entire vaccinated population. IGHV4 was the most commonly identified IGHV subgroup of Pfs25-IG, a pattern that was corroborated by VH/VL sequencing of Pfs25-specific single B cells from five vaccinees and by matching plasma Pfs25-IG peptides and V-(D)-J sequences of Pfs25-specific single B cells from the same donor. Among 13 recombinant human mAbs generated from IG sequences of Pfs25-specific single B cells, a single IGHV4 mAb displayed strong neutralizing activity, reducing the number of P. falciparum oocysts in infected mosquitoes by more than 80% at 100 μg/mL. Our approach characterizes the human plasma antibody repertoire in response to the Pfs25-EPA/Alhydrogel vaccine and will be useful to study circulating antibodies in response to other vaccines as well as those induced during infections or autoimmune disorders.

HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-Specific B Cell Receptors


2020 Arineh Khechaduri; Marie Pancera; Leonidas Stamatatos; Andrew Riker; Andrew Stuart; Connor Weidle; Parul Agrawal; Katherine Parks; Brittany Takushi; Matthew Gray; Yu-Ru Lin

Activating precursor B cell receptors of HIV-1 broadly neutralizing antibodies requires specifically designed immunogens. Here, we compared the abilities of three such germline-targeting immunogens against the VRC01-class receptors to activate the targeted B cells in transgenic mice expressing the germline VH of the VRC01 antibody but diverse mouse light chains. Immunogen-specific VRC01-like B cells were isolated at different time points after immunization, their VH and VL genes were sequenced, and the corresponding antibodies characterized. VRC01 B cell sub-populations with distinct cross-reactivity properties were activated by each immunogen, and these differences correlated with distinct biophysical and biochemical features of the germline-targeting immunogens. Our study indicates that the design of effective immunogens to activate B cell receptors leading to protective HIV-1 antibodies will require a better understanding of how the biophysical properties of the epitope and its surrounding surface on the germline-targeting immunogen influence its interaction with the available receptor variants in vivo.

Flt3-L enhances trans-epithelial migration and antigen presentation of dendritic cells adoptively transferred to genital mucosa

J Control Release

2020 David Koelle; Florian Hladik

Dendritic cells (DCs) play a critical role in shaping adaptive immunity. Systemic transfer of DCs by intravenous injection has been widely investigated to inform the development of immunogenic DCs for use as cellular therapies. Adoptive transfer of DCs to mucosal sites has been limited but serves as a valuable tool to understand the role of the microenvironment on mucosal DC activation, maturation and antigen presentation. Here, we show that chitosan facilitates transmigration of DCs across the vaginal epithelium in the mouse female reproductive tract (FRT). In addition, ex vivo programming of DCs with fms-related tyrosine kinase 3 ligand (Flt3-L) was found to enhance translocation of intravaginally administered DCs to draining lymph nodes (dLNs) and stimulate in vivo proliferation of both antigen-specific CD4+ and CD8+ T cells (cross-presentation). Mucosal priming with chitosan and DC programming may hold great promise to enhance efficacy of DC-based vaccination to the female genital mucosa.

Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): a randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study

Lancet HIV

2020 Larry Corey; Julie McElrath; Philipp Mann; James Kublin

BACKGROUND: Bioinformatically designed mosaic antigens increase the breadth of HIV vaccine-elicited immunity. This study compared the safety, tolerability, and immunogenicity of a newly developed, tetravalent Ad26 vaccine with the previously tested trivalent formulation. METHODS: This randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study (TRAVERSE) was done at 11 centres in the USA and one centre in Rwanda. Eligible participants were adults aged 18 to 50 years, who were HIV-uninfected, healthy at screening based on their medical history and a physical examination including laboratory assessment and vital sign measurements, and at low risk of HIV infection in the opinion of study staff, who applied a uniform definition of low-risk guidelines that was aligned across sites. Enrolled participants were randomly assigned at a 2:1 ratio to tetravalent and trivalent groups. Participants in tetravalent and trivalent groups were then further randomly assigned at a 5:1 ratio to adenovirus 26 (Ad26)-vectored vaccine and placebo subgroups. Randomisation was stratified by region (USA and Rwanda) and based on a computer-generated schedule using randomly permuted blocks prepared under the sponsor's supervision. We masked participants and investigators to treatment allocation throughout the study. On day 0, participants received a first injection of tetravalent vaccine (Ad26.Mos4.HIV or placebo) or trivalent vaccine (Ad26.Mos.HIV or placebo), and those injections were repeated 12 weeks later. At week 24, vaccine groups received a third dose of tetravalent or trivalent together with clade C gp140, and this was repeated at week 48, with placebos again administered to the placebo group. All study vaccines and placebo were administered by intramuscular injection in the deltoid muscle. We assessed adverse events in all participants who received at least one study injection (full analysis set) and Env-specific binding antibodies in all participants who received at least the first three vaccinations according to the protocol-specified vaccination schedule, had at least one measured post-dose blood sample collected, and were not diagnosed with HIV during the study (per-protocol set). This study is registered with, NCT02788045. FINDINGS: Of 201 participants who were enrolled and randomly assigned, 198 received the first vaccination: 110 were in the tetravalent group, 55 in the trivalent group, and 33 in the placebo group. Overall, 185 (93%) completed two scheduled vaccinations per protocol, 180 (91%) completed three, and 164 (83%) completed four. Solicited, self-limiting local, systemic reactogenicity and unsolicited adverse events were similar in vaccine groups and higher than in placebo groups. All participants in the per-protocol set developed clade C Env binding antibodies after the second vaccination, with higher total IgG titres after the tetravalent vaccine than after the trivalent vaccine (10413 EU/mL, 95% CI 7284-14886 in the tetravalent group compared with 5494 EU/mL, 3759-8029 in the trivalent group). Titres further increased after the third and fourth vaccinations, persisting at least through week 72. Other immune responses were also higher with the tetravalent vaccine, including the magnitude and breadth of binding antibodies against a cross-clade panel of Env antigens, and the magnitude of IFN ELISPOT responses (median 521 SFU/106 peripheral blood mononuclear cells [PBMCs] in the tetravalent group and median 282 SFU/106 PBMCs in the trivalent group after the fourth vaccination) and Env-specific CD4+ T-cell response rates after the third and fourth vaccinations. No interference by pre-existing Ad26 immunity was identified. INTERPRETATION: The tetravalent vaccine regimen was generally safe, well-tolerated, and found to elicit higher immune responses than the trivalent regimen. Regimens that use this tetravalent vaccine component are being advanced into field trials to assess efficacy against HIV-1 infection. FUNDING: National Institutes of Health, Henry M Jackson Foundation for Advancement of Military Medicine and the US Department of Defense, Ragon Institute of MGH, MIT, & Harvard, Bill & Melinda Gates Foundation, and Janssen Vaccines & Prevention.

Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation

Nat Commun

2020 Marie Pancera; Andrew Stuart; Junli Feng; Nicholas Hurlburt; Leonidas Stamatatos; Andrew McGuire; Yu-Hsin Wan; Emilie Seydoux

SARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determine the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain. The structure reveals that CV30 binds to an epitope that overlaps with the human ACE2 receptor binding motif providing a structural basis for its neutralization. CV30 also induces shedding of the S1 subunit, indicating an additional mechanism of neutralization. A germline reversion of CV30 results in a substantial reduction in both binding affinity and neutralization potential indicating the minimal somatic mutation is needed for potently neutralizing antibodies against SARS-CoV-2.

OMIP-070:NKp46-Based 27-Color Phenotyping to Define Natural Killer Cells Isolated From Human Tumor Tissues

Cytometry A

2020 Florian Mair; Marie Frutoso; Martin Prlic

This 27-color panel has been validated and optimized to comprehensively profile Natural Killer (NK) cells isolated from human tumors using a collagenase type II-based digestion protocol. We confirmed that detection of protein expression by antibodies used in our final panel was not affected during tissue digestion. During this evaluation process we found that detection of CD56, a biomarker typically used to identify NK cells, was affected substantially by collagenase-based digestion. Thus, our panel is centered around expression of NKp46, which is sufficient to identify NK cells and not affected by the tissue collagenase digestion step. Our panel further includes biomarkers used to extrapolate NK cell maturation, differentiation, migration, homing potential, and functional state. Our panel is intended to provide in-depth characterization of human NK cells isolated from tissues, which we specifically tested using oral squamous cell carcinomas, breast cancer tissues, but is compatible with other tissues that can be dissociated with a collagenase type II-based protocol. This article is protected by copyright. All rights reserved.