Biostatistics Seminar Series, April 19, 2023

The Fred Hutch Biostatistics Program hosts seminars featuring presentations by Fred Hutch and outside scientists to share their latest developments and recent research. Each seminar includes an hour-long presentation and discussion during which speakers showcase their work and findings. 

This seminar will be via Zoom.

Kosuke Imai

PRESENTER:

Kosuke Imai

"Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment"

Algorithmic recommendations and decisions have become ubiquitous in today's society. Many of these and other data-driven policies, especially in the realm of public policy, are based on known, deterministic rules to ensure their transparency and interpretability. For example, algorithmic pre-trial risk assessments, which serve as our motivating application, provide relatively simple, deterministic classification scores and recommendations to help judges make release decisions. How can we use the data based on existing deterministic policies to learn new and better policies? Unfortunately, prior methods for policy learning are not applicable because they require existing policies to be stochastic rather than deterministic. We develop a robust optimization approach that partially identifies the expected utility of a policy, and then finds an optimal policy by minimizing the worst-case regret. The resulting policy is conservative but has a statistical safety guarantee, allowing the policy-maker to limit the probability of producing a worse outcome than the existing policy. We extend this approach to common and important settings where humans make decisions with the aid of algorithmic recommendations. Lastly, we apply the proposed methodology to a unique field experiment on pre-trial risk assessment instruments. We derive new classification and recommendation rules that retain the transparency and interpretability of the existing instrument while potentially leading to better overall outcomes at a lower cost. The paper is available at https://imai.fas.harvard.edu/research/safe.html

Date:
Wednesday, April 19, 2023
Start Time:
12 p.m. PDT
Location:
Zoom Webinar
Speaker or Presenter:
Kosuke Imai
Contact Information: