

INSTITUTE FOR PROSTATE CANCER RESEARCH

Report to the Community 2025

Where Innovation Meets Impact

Who we are

The Institute for Prostate Cancer Research is a collaborative effort between UW Medicine and Fred Hutch Cancer Center.

Our expert team of scientists and clinicians work to fulfill our four-part mission:

- Understanding prostate cancer to improve diagnosis and treatment.
- Providing effective, individualized therapy for patients.
- Extending and enhancing the quality of a patient's life upon diagnosis.
- Discovering novel therapeutic strategies to cure prostate cancer.

To achieve this mission, we are committed to:

- Studying potential preventive agents and strategies.
- Developing new biomarkers for early diagnosis and therapy selection.
- Improving surgical, radiation and ablative techniques.
- Exploring the biology of prostate cancer metastasis and its resistance to treatment.
- Understanding both hereditary and acquired gene defects to develop better detection and therapy strategies.
- Advancing targeted imaging technologies and integrating them with novel therapies.
- Conducting innovative clinical trials to bring new discoveries to the bedside.

Message from the Director

I am delighted to share the latest installment of our *Report to the Community*. In these pages, you'll find updates on bold new avenues of discovery as well as introductions to the outstanding faculty who are shaping the future of our program.

The theme of this issue — "Where Innovation Meets Impact" — captures the spirit of our mission: to transform the care of prostate cancer patients and their families through groundbreaking, patient-centered science.

At IPCR, our strategy is both comprehensive and ambitious. We are pursuing projects that span the full spectrum of prostate cancer: from prevention, screening and early detection to treatment of advanced disease. By harnessing rapid advances in genomics, we are moving ever closer to truly personalized therapies — treatments tailored not just to prostate cancer but to each patient's unique tumor biology. Just as important, our emphasis on multidisciplinary collaboration — uniting basic scientists, clinical investigators and patient advocates — fuels discoveries that no single discipline could achieve alone.

This edition also spotlights our ambitious \$100 million initiative to accelerate progress in screening, diagnostics and treatment. We recently celebrated this momentum at a special evening hosted by our advisory council chair Jon Fine and featuring travel expert — and one of my patients — Rick Steves as keynote speaker. You can read more about this extraordinary event beginning on page 16. At a time when the federal research climate poses significant funding challenges, we rely on gifts from patients, families and community partners to enable us to reach for new heights of excellence.

I want to extend my deepest gratitude to the remarkable IPCR team and to our generous supporters representing two world-class institutions — UW Medicine and Fred Hutch Cancer Center. Together, we are not just advancing research; we are shaping the future of prostate cancer care.

Thank you for being part of this journey. If you would like more information, we are happy to arrange a tour of our facilities and an informational session. As always, feel free to reach out to me directly at any time (dlin@uw.edu).

Warm regards,

Daniel W. Lin, MD

*Director, Institute for Prostate Cancer Research
Pritz Family Endowed Chair of Prostate Cancer Research
Professor and Interim Chair, Department of Urology, University of Washington*

Message from the Scientific Director

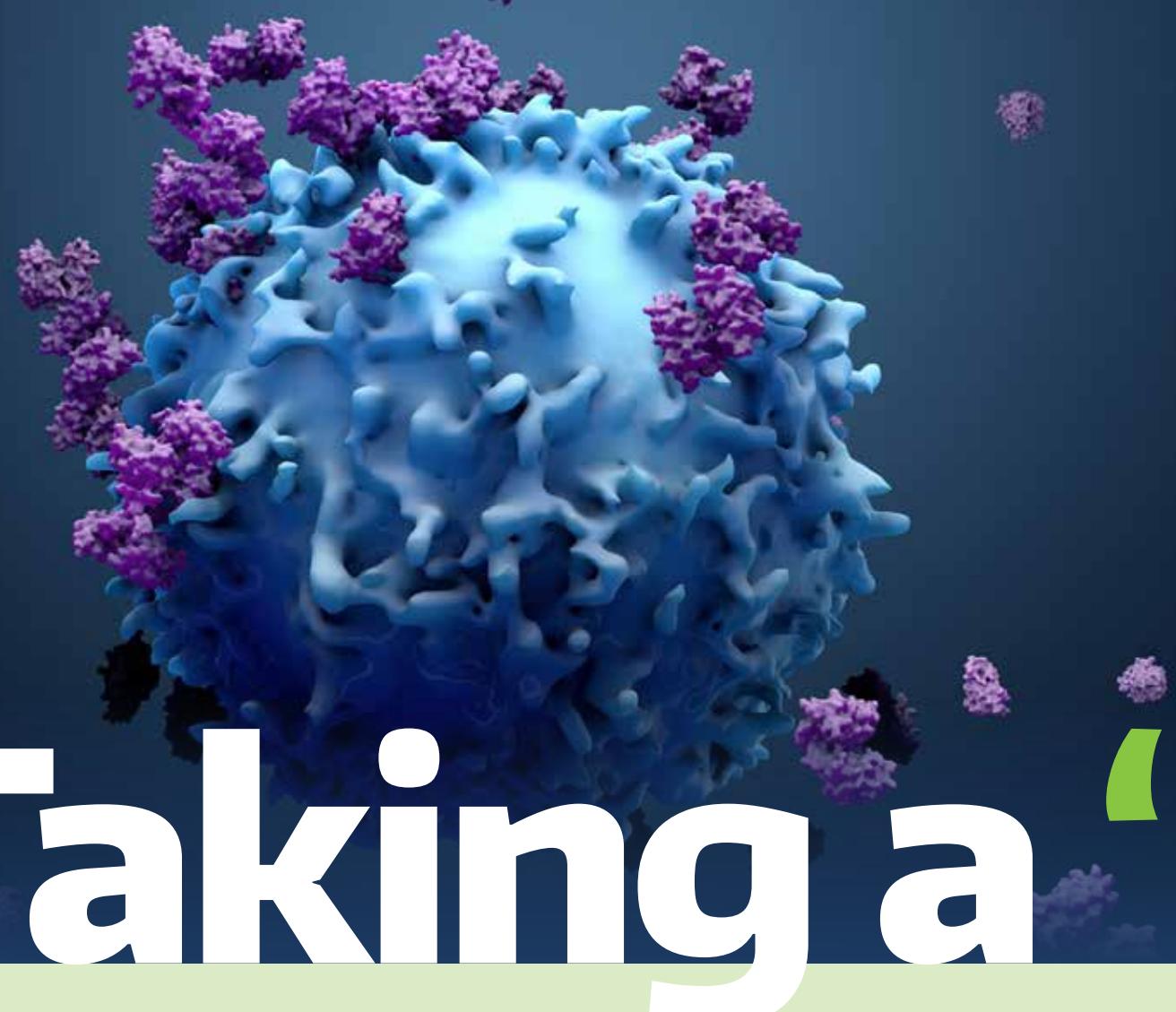
This is a remarkable and exciting time for science, medicine, oncology and, especially, the understanding and treatment of prostate cancer.

We are making major advances in all aspects of prostate cancer treatment — employing novel technologies and exploiting new therapeutic approaches that take advantage of what we are learning about the causes of prostate cancer, how it behaves and what targets we need to leverage in order to eradicate it. But we still have a long way to go.

Though therapies for localized prostate cancer can cure the disease, they do have side effects and today we are not able to routinely eliminate advanced prostate cancer. Fortunately, IPCR researchers and doctors have no shortage of ideas with great potential to improve the current standards of care. You'll read about some of their exciting research and new advances in the pages that follow.

We have designed multiple new "good-to-go" projects, each of which uses the concept of precision oncology, which recognizes that not all prostate cancers are the same. With that in mind, we need to deploy prevention strategies, screening approaches and treatment plans that customize recommendations based on an individual patient's unique characteristics.

For two decades, the goals of the Institute for Prostate Cancer Research have centered on making advances so men will live longer and live better. Now, new discoveries involving immune-based treatments, imaging technologies and targeted therapeutics have motivated new IPCR goals that emphasize prevention, early detection — and *cure*.



With such robust partnerships between you — our patients and communities — and our IPCR research teams, these goals can be achieved. Thank you for your interest and ongoing support of our work.

With gratitude,

Peter S. Nelson, MD

*Scientific Director, Institute for Prostate Cancer Research
Stuart and Molly Sloan Precision Oncology Institute Endowed Chair
Director, Stuart and Molly Sloan Precision Oncology Institute
Professor, Human Biology Division, Fred Hutch Cancer Center*

Taking a “BiTE” OUT OF PROSTATE CANCER

Dr. Lawrence Fong, a genitourinary oncologist and immunotherapy expert, has spent nearly three decades studying how to use the body’s own immune system to fight cancer. His research has been transformative, making significant contributions in understanding how immunotherapies work and identifying mechanisms of resistance that can be targeted with next-generation approaches.

One of these research areas involves a new modality focused on BiTEs, or bispecific T-cell engagers. This pioneering therapy uses engineered molecules that link T-cells to cancer cells. “I tell my patients it’s like Velcro,” said Fong. “One end binds to the tumor cell and one end binds to the T-cell.” When the two cells are in close proximity, the T-cell releases molecules that attack and kill the cancer cell.

BiTEs have been approved by the Food and Drug Administration for certain cancers such as lymphoma and multiple myeloma, and recently a BiTE received FDA approval for small-cell lung cancer that also works in small-cell prostate cancer.


But there’s another set of BiTEs in the pipeline that target STEAP-1, a protein that helps cancer cells survive and grow and which is expressed primarily in prostate tissue. “This therapy has shown a clinical response rate on the order of 40% to 50% for men with prostate cancer — unheard of in immunotherapy,”

said Fong. “It proves that immunotherapy can lead to significant clinical responses in about half of the prostate cancer patients we treat, which is very exciting news.”

Currently, BiTE clinical trials are ongoing at Fred Hutch Cancer Center, involving patients with advanced prostate cancer as well as those who are hormone-sensitive or in biochemical relapse.

Mediating immunotherapy resistance

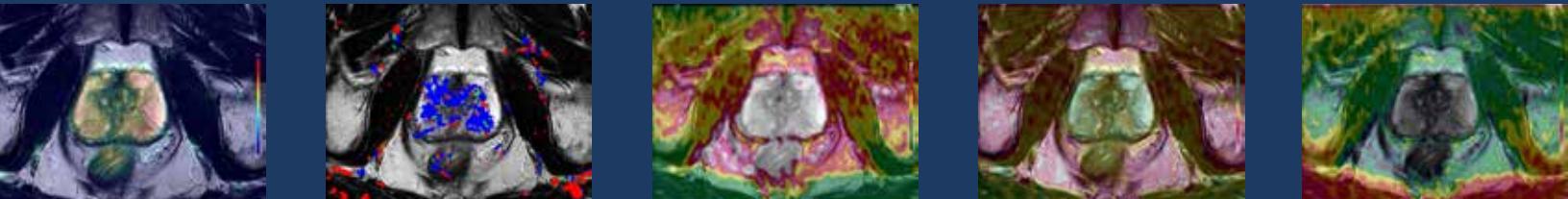
Fong and his team are also studying why some patients respond well to immunotherapy treatment while others do not. “Cancer’s resistance to treatment is an issue with other forms of cancer therapy but there’s an added level of complexity in immunotherapy,” said Fong. “It’s not just a drug working on a cancer cell; it’s a drug working on the immune system that then has to work on a cancer cell.”

Immune checkpoint inhibitors have been clinically effective against many solid tumors, but most patients with advanced prostate cancer are not among them — a treatment failure attributed to myeloid cells in the tumors. But the heterogeneity of the myeloid cells has made them difficult to target.

Recently Fong has defined one specific population of myeloid cells in prostate cancer that can suppress immune function. “It’s a very difficult cell type to study,” explained Fong, “because these cells suppress the immune system in a few different ways. You can’t just block one of them; you have to block as many of them as you can. The good news is now that we have identified this specific cell type, we know what those mechanisms are and we can think about specific ways to target them.”

In 2024, Fong joined Fred Hutch as scientific director of the Immunotherapy Integrated Research Center (IIRC) and was appointed the first Bezos Family Distinguished Scholar in Immunotherapy. But he is no stranger to Seattle. After graduating from Stanford University’s School of Medicine in 1992, he completed his internship and residency in internal medicine at the University of Washington.

Fong returned to Stanford for an oncology fellowship and then joined the faculty of the University of California San Francisco in 2001. That year, he received an Outstanding Investigator Award from the National Cancer Institute which provided him with \$4.2 million over seven years to study responses to cancer immunotherapy.


Fred Hutch’s reputation as a center for innovative research and its extensive history in cancer immunotherapy played a role in Fong’s decision to return to the Northwest. “I’ve worked on prostate cancer immunotherapy for almost my entire career,” he said, “and I would argue that the prostate group at Fred Hutch is probably the top prostate group in the country.”

While leading the research at IIRC, Fong hopes to build on past immunotherapy successes while scaling up impact, reaching beyond a small group of prostate cancer patients to impact hundreds. “All the pieces of the puzzle are here,” said Fong. “Now we need to leverage our existing infrastructure, immunology expertise and clinical prowess and we can transform the future of prostate cancer care.”

Advanced imaging TECHNOLOGIES improve diagnostic accuracy

Medical imaging plays a critical role in modern health care. This is especially true for how physicians evaluate, diagnose and treat prostate cancer.

Historically, urologists relied on ultrasound — a technique that uses sound waves to create images of the body — to evaluate the prostate. While useful, it often lacks the anatomical detail needed.

The development of magnetic resonance imaging, or MRI, in the late 1970s marked a turning point. This technology uses magnetic fields and radio waves to create high-resolution images with exquisite anatomical detail and functional information.

This level of precision makes MRI especially valuable in diagnosing conditions like prostate cancer, greatly improving the accuracy of detection and treatment planning. "We're able to see so much more with an MRI than with ultrasound," said Dr. Antonio Westphalen, a radiologist and section chief of abdominal imaging at the University of Washington. "I like to tell people that an MRI is actually multiple different tests acquired on the same machine. Because of that, there's a lot more we can do with an MRI than with ultrasound."

Prostate cancer patients with low-risk tumors are often put on active surveillance which offers some combination of periodic prostate-specific antigen (PSA) testing, digital rectal exams and prostate biopsies. Although MRI has long been a powerful imaging tool, its integration into active surveillance protocols became more widespread after PI-RADS (Prostate Imaging-Reporting and Data System) was introduced more than a decade ago.

PI-RADS brought much-needed standardization to how prostate MRI results are interpreted and reported, increasing clinicians' confidence in using it to guide care. "MRI identifies a suspicious area in the gland, and PI-RADS assigns to it a likelihood that it represents cancer, and more specifically, clinically significant cancer," explained Westphalen. "With this guidance, a physician can place a biopsy needle in a specific location and feel confident that the most suspicious area is being targeted."

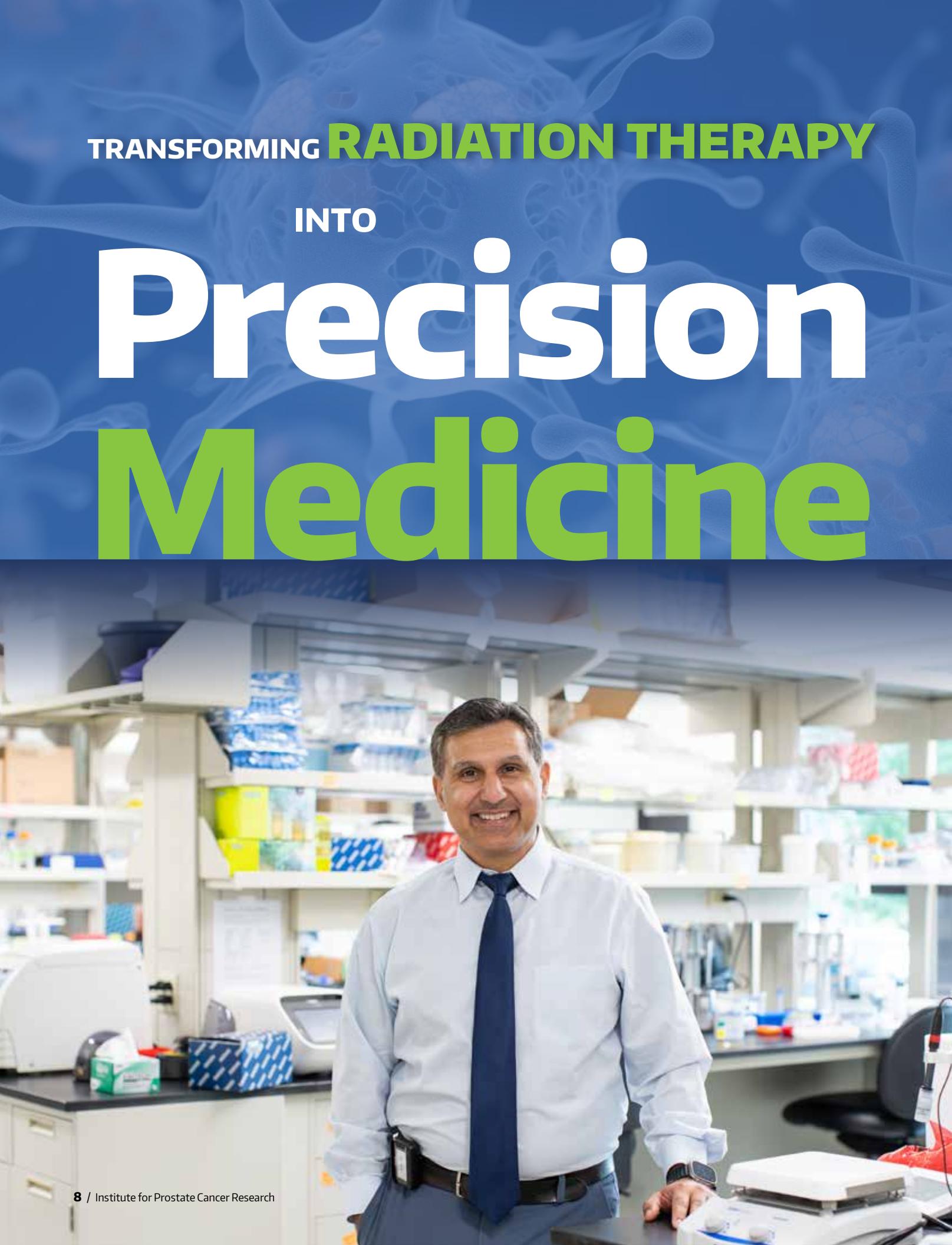
Although PI-RADS improved the accuracy of acquiring, identifying and reporting on prostate cancer, the system was not designed to reflect changes over time. Enter PRECISE or Prostate Cancer Radiological Estimation of Change in Sequential Evaluation. The PRECISE criteria, which also use a numeric scoring system, were created specifically for follow-up over time when the patient is on active surveillance.

But this advancement introduced a new set of problems. Because PRECISE tracks changes over time, the amount of data generated

mushroomed. "MRI is already a complex exam to interpret," said Westphalen. "Now with active surveillance and longitudinal tracking, we need to do even more with each scan."

There is growing recognition that MRI images contain much more information than the human eye can see. "Until recently, we didn't have widely available computational tools to run these very large data sets," said Westphalen. "One image has innumerable amounts of information. Multiply that by thousands of images, we just couldn't handle it."

Radiomics: The new frontier


Today, scientists are studying ways that artificial intelligence, or AI, can be used to quickly and consistently extract and analyze imaging data. AI is adept at spotting complex patterns and anomalies that might be overlooked by the human eye; this level of precision can help reduce misdiagnoses and ensure patients get the treatment they need.

Advanced tools like radiomics can be coupled with AI to increase the capacity to handle massive amounts of data. This approach extracts quantitative information from diagnostic scans and creates algorithms used to develop predictive models, giving health care providers critical insights.

Westphalen and his team have begun assembling a living database that will expand as more patients enter the system. "We will run a database analysis first with PRECISE and then will see how radiomics can improve upon the results," he said. "The goal is to identify people with high-risk disease or unfavorable intermediate risk."

The University of Washington is ideally positioned to study these emerging technologies and was a key reason Westphalen joined the staff in 2022. Like the Institute for Prostate Cancer Research, the UW is heavily invested in artificial intelligence through the AI Institute for Dynamic Systems.

"So we have the clinical setting and the AI expertise," said Westphalen. "We have people who can bridge both disciplines, we have enough cases to study, and we have collaborations already in place with other research institutions. The data we get from these advanced technologies can potentially change how we manage the disease."

TRANSFORMING RADIATION THERAPY INTO Precision Medicine

More than half of all cancer patients will receive radiation at some point during their treatment, often in combination with other therapies. Last year, Fred Hutch upped its expertise in this area when it established a new Radiation Oncology Division and recruited Dr. Omar Mian to lead the Precision Radiation Sciences program.

Mian, a physician-scientist and a radiation oncologist with a specialty in prostate and bladder cancer, joined the Institute for Prostate Cancer Research in September 2024, after spending eight years at the Cleveland Clinic.

In the past, oncologists treated cancer by employing the maximum dose of radiation that could be safely delivered to kill cancer cells and shrink tumors. But now the focus has shifted towards precision radiation — delivering the right dose with pinpoint precision in combination with personalized radiosensitizing systemic therapy, and guided by the specific features of an individual's cancer.

This precision approach has two benefits: it maximizes the therapeutic effect of radiation and minimizes harm to the patient. Walking this tightrope, however, takes an extraordinary level of sophistication and a solid foundation in technical innovation, basic radiobiology research and clinical investigation.

"Precision radiation therapy means employing the right treatment combination for the right patient at the right time at the right dose," Mian explained. "We try to customize treatments as much as possible. For this, we need a framework grounded in cutting-edge technology, preclinical laboratory research and clinical research findings so we can feel confident that the treatments we select for a patient are the most effective ones we have."

As a physician-scientist, Mian studies the molecular features of prostate cancer, investigating why some cancers progress from early-stage and curable to more aggressive and treatment-resistant. He and his lab interpret medical imaging techniques to track disease progression, study post-radiation tumor samples that have survived radiation therapy, and explore the interplay between hormone receptor signaling and radiation resistance.

Mian's decision to pursue a career in oncology was influenced several decades ago when his father was diagnosed with an aggressive form of prostate cancer. "Unfortunately, treatments back then were not as advanced as they are today," said Mian, "and my father died relatively young. I was in college at the time. Although I had always liked science and math, oncology and prostate cancer research were not on my radar. My decision to enter medicine was based on that personal experience."

Mian went on to complete his undergraduate degree from James Madison University in Harrisonburg, Virginia, followed by an MD and PhD from Virginia Commonwealth University School of Medicine and an MD in radiation oncology from Johns Hopkins University in Baltimore.

A unique perspective

Mian's extensive experience as both a physician and a cancer researcher gives him a unique vantage point, enabling him to operate at the forefront of science and also observe first-hand how new therapies are improving patient outcomes.

"The hardest times are when we come face-to-face with the limits of our treatments, when we see patients who are suffering from a disease we can't cure," he said. "It is these areas where we need more research, more investment and more effort. Seeing unmet needs in the clinic informs the direction of my lab, but the converse is true as well. Scientific thinking — identifying a problem, developing a hypothesis, testing that hypothesis, revising it — these processes also apply in my practice."

His decision to join the IPCR team was influenced by the institute's national reputation as a top cancer research facility. "IPCR's prostate cancer research program and its genitourinary oncology research team are among the best in the country and the world," said Mian. "Patients who live in this area, and those who travel to get their care here, are very lucky to have this level of expertise."

According to Mian, the future of radiation therapy lies in its ability to be more precise and better aligned with patient needs — and he is looking forward to continuing his work at IPCR to improve this powerful treatment delivery system. "My role within the new Radiation Oncology Division is to study the interaction of radiation with systemic therapies, explore the tumor microenvironment and learn about tissue interactions — all with the goal of individualizing treatment and improving the management of this challenging disease. The potential impact is enormous and something I'm extremely excited about."

TAILORING PROSTATE CANCER TREATMENT TO THE INDIVIDUAL PATIENT

Managing prostate cancer is a multifaceted undertaking. The huge spectrum of the disease alone – from low-grade and slow-growing to lethal – complicates the picture.

It's this range and complexity that attracted Dr. Claire de la Calle, a urologic oncology surgeon and researcher, to the field.

At the Institute for Prostate Cancer Research, de la Calle studies how a patient's genetic makeup can affect outcomes. She is also expanding the use of a leading-edge biopsy technique called transperineal biopsy, giving patients more options.

De la Calle is also studying the risks affiliated with germline genetics — inherited cells passed down from one generation to the next — for patients treated for low-grade prostate cancer managed through active surveillance.

"I am looking at three measures of inherited risk," she explained, "family history, polygenic risk scores and rare pathogenic mutations like the BRCA mutation, and then asking: How are these three measures potentially associated with patient outcomes? How do they interact with each other?"

Her interest in germline genetics began several years ago during her fellowship at Johns Hopkins. "I wanted to see how inherited mutations might impact active prostate cancer surveillance outcomes," said de la Calle. "There are studies that suggest having a family history as well as being a carrier of a mutation can increase risk."

Her work in this area was recognized recently by the National Cancer Institute which named de la Calle to its Early-Stage Surgeon Scientist Program (ESSP) cohort — one of only 10 scientists nationwide selected for this honor last year.

In addition to the research funds, the ESSP offers an additional benefit: cohort and mentor support for three years. "During that time, I'll meet annually with the other awardees from my cohort," she said. "We'll present our research, get feedback and learn how to move our research forward."

The ESSP recognition paved the way for another three-year award, also granted in 2024, from the Prostate Cancer Foundation where de la Calle received the Young Investigator Award, allowing her to continue her study of the role of digital pathology in active surveillance.

Collaborative approach to research

At IPCR, de la Calle is part of the Canary PASS (Prostate Active Surveillance Study). This project, launched in 2008, is one of the largest active surveillance cohorts in the world, with 11 participating clinical sites in the U. S. and Canada. Fred Hutch serves as the team's coordinating center.

Canary PASS team members collect data and tissue samples from more than 2,300 patients with early-stage prostate cancer. Researchers are then able to use the data to better distinguish between low-risk and aggressive prostate cancers, develop biomarkers that can help with early detection, and recommend ways to reduce overtreatment.

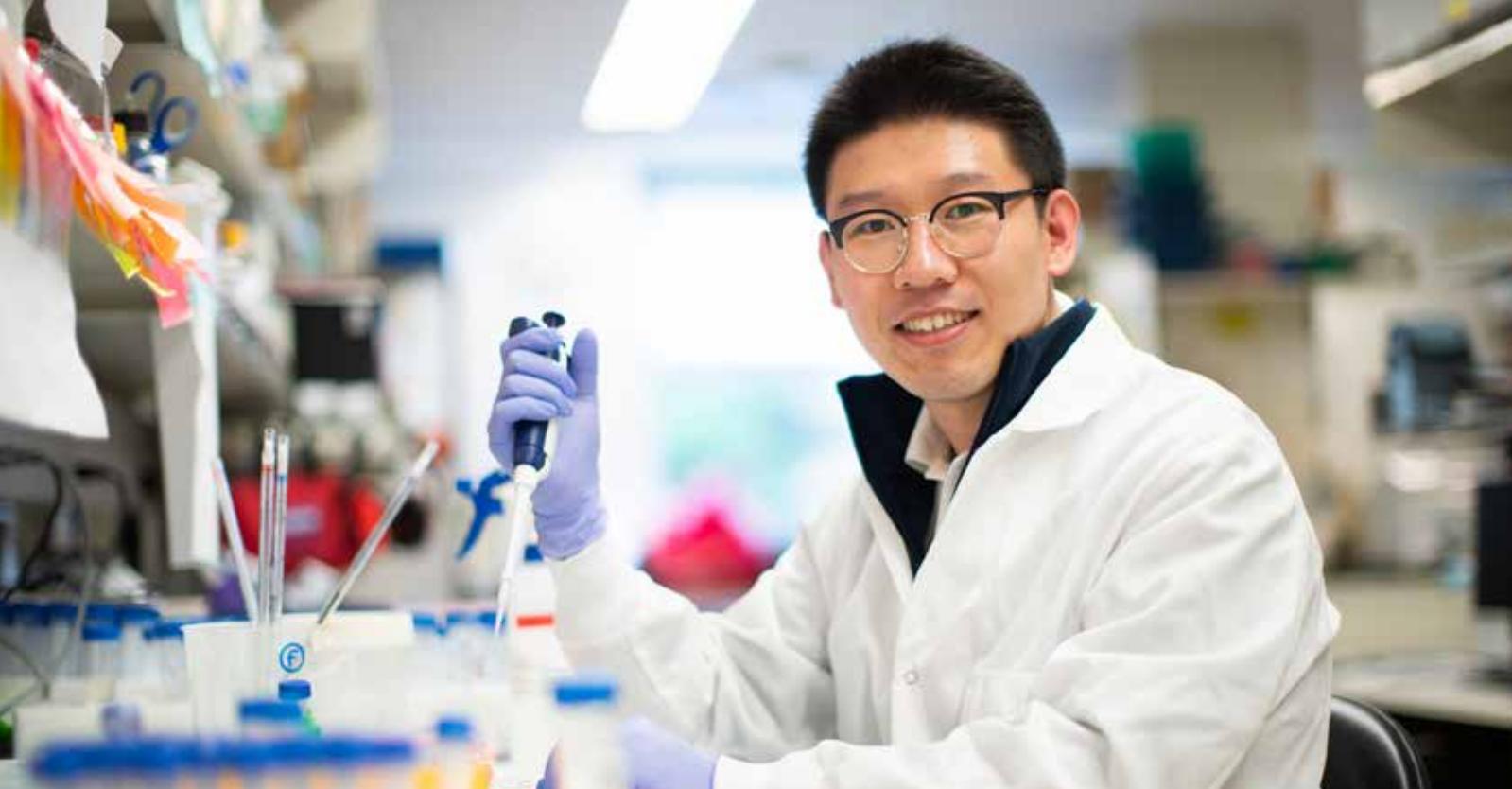
"No one can really do research on their own anymore," said de la Calle, "and the Canary PASS team is a great example of a collaborative approach. The team includes researchers, statisticians and clinicians like me who divide their time between the clinic and research. Each of us brings a unique perspective to the study."

Reducing prostate biopsy risks

De la Calle's interest in prostate cancer began early in her medical studies. Raised in Mexico City and schooled in Paris, she was introduced to prostate cancer research as a medical student at Emory University School of Medicine in Atlanta.

FRED HUTCH SERVES AS THE COORDINATING CENTER FOR THE CANARY PASS STUDY, THE LARGEST MULTI-SITE STUDY AND BIOREPOSITORY IN NORTH AMERICA.

CLAIRE DE LA CALLE, MD


She is the first prostate cancer surgeon at UW Medicine to provide transperineal biopsies — an alternative to transrectal biopsy — and she recently launched a program to teach the innovative technique to others.

"In the U. S., only about 20% of prostate cancer biopsies are done this way," said de la Calle, "but in Europe, guidelines from the European Association of Urology recommend transperineal biopsies over transrectal. As patients are learning more about their options, more men in the U. S. are requesting this type of procedure."

Conducting prostate biopsies transrectally can carry a risk of infection because the biopsy needle passes through the potentially contaminated rectum. With a transperineal biopsy, the risk is reduced since the urologist passes the needle through the perineal skin and into the prostate.

Transperineal biopsies may be a good option for those with a history of recurring urinary tract infections or individuals who are immunocompromised. Both procedures are tolerated well, and the recovery time is about the same, usually about a day.

De la Calle is teaching the procedure to UW Medicine's urologic oncology fellows and residents, and she recently trained one of her colleagues in this technique as well. "It's important to give our patients more choice as they work to navigate the complicated landscape of prostate cancer," she said.

Next-gen therapies IN THE BATTLE AGAINST PROSTATE CANCER

Androgen receptor (AR) targeting therapy is a cornerstone treatment for advanced prostate cancer.

When androgen binds to the AR, it acts like a switch, ramping up the growth of cancer cells. To interrupt the signal, drug treatments are often prescribed to decrease or block androgen action.

But tumors sometimes find a way to bypass these therapies, causing a relapse. Researchers are now studying how to block androgen receptors entirely by targeting how they are maintained in the cells.

Enter Dr. Haolong Li, a cancer biologist at the Institute for Prostate Cancer Research. At the Haolong Li Lab, Li and his research team are working to discover next-generation treatment strategies for advanced prostate cancer.

One avenue of research is to examine how aggressive prostate cancers are able to maintain AR signaling and escape the current therapies meant to thwart them. To assist with their research, Li's team is using cutting-edge genetic screening and sequencing techniques made possible through CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), an efficient and versatile tool for manipulating genes. Sometimes referred to as "genetic scissors," CRISPR technology allows scientists to precisely cut and modify the genomes.

ABOVE: DR. HAOLONG LI IN HIS LAB

"Some prostate cancer cells maintain a really high level of AR," said Li, "but we don't fully understand how or why. CRISPR screening helps simplify the traditional approach to testing hypotheses. For example, is gene A or gene B responsible for promoting cancer cell growth? If we remove this gene, will the cancer stop growing? In the past, we could only test one gene at a time but with CRISPR screening, we can screen thousands of genes in a single experiment. On top of this, we're using what's called a genome scale library to broaden our discovery pipeline."

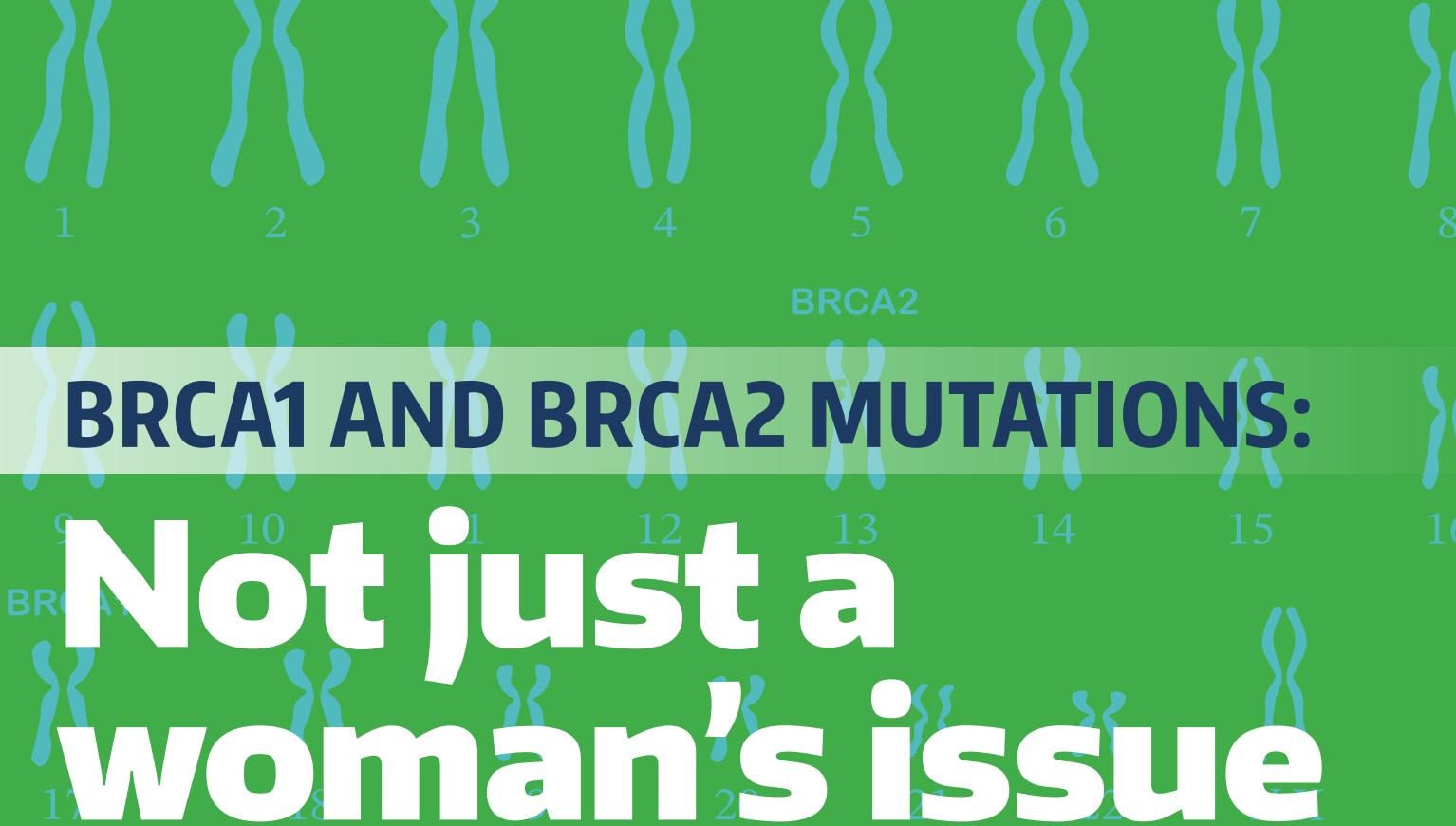
Using this approach, Li has identified a new protein called PTGES3 which may help maintain AR stability. Even more important, the PTGES3 protein has the potential to be blocked by molecules to help disrupt AR stability and reduce AR protein expression.

"Our research shows that PTGES3 appears to directly bind to the androgen receptor and the two interact with each other," said Li. "That finding confirmed it is a good target." Drug screening and preliminary testing are underway with early results showing that the therapy can reduce tumor growth in preclinical models.

CRISPR technology was developed over several decades beginning in the late 1980s but its key breakthrough came in 2012 when researchers demonstrated its ability to edit genes in vitro. Since then, it has been adopted by labs worldwide and has essentially revolutionized biomedical research. Jennifer Doudna and Emmanuelle Charpentier, the scientists who identified this groundbreaking technology, were awarded the Nobel Prize in Chemistry in 2020.

Going forward, Li will be delving more into the PTGES3 protein to understand its structure and how it interacts with androgen receptors. In the future, in addition to further optimizing the preclinical drugs developed to target PTGES3, he hopes to determine whether PTGES3 can serve as a biomarker in predicting which patients are good candidates for this next-gen treatment.

First-hand inspiration


Biology was always a passion for Li, but he became interested in a career in cancer biology — a field of study that focuses on the mechanisms underlying fundamental processes such as cell growth or how normal cells transform into cancer cells — after a series of interactions with prostate cancer patients.

"While I was working on my doctorate at the University of British Columbia, I attended fundraising events for prostate cancer

every year," he recalled. "There I heard many moving stories from cancer survivors. I even ran a 5K race alongside someone who had survived with prostate cancer for 10 years. Then I learned that one of my PhD committee members was a prostate cancer survivor. Just seeing those individuals fighting so hard was incredibly inspiring."

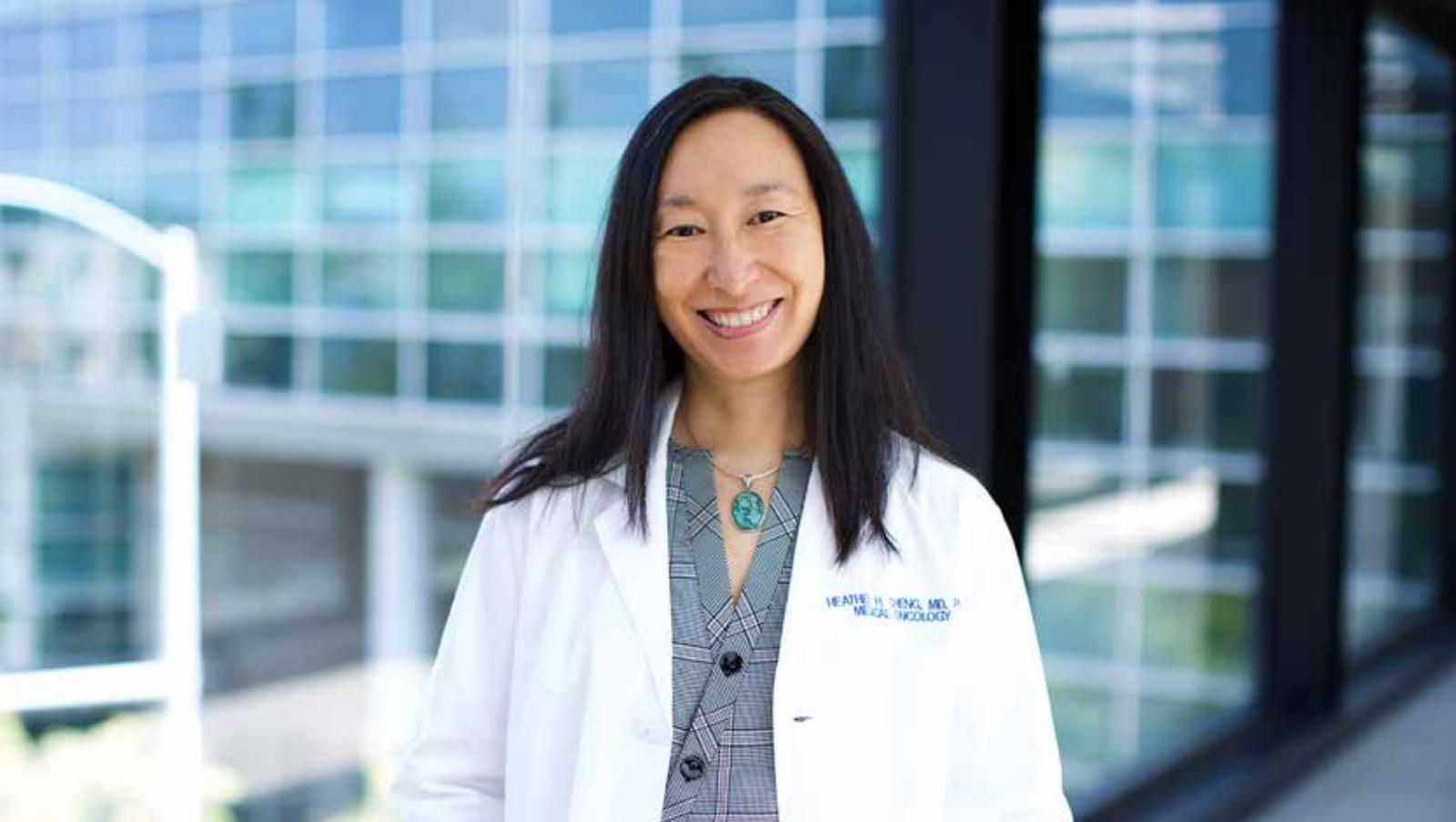
After earning his PhD in 2017, Li joined the research staff at the University of California San Francisco. He was recruited by Fred Hutch in July 2024 where he established the Haolong Li Lab. A native of China, Li completed his Bachelor of Science and Master of Science degrees at Jilin University in Changchun, China. In 2021, his research was recognized with a Young Investigator Award from the Prostate Cancer Foundation.

Although prostate cancer research has already seen significant advances in treatment protocols, Li believes there is room for new technologies to evolve. One of the areas he points to is cell therapy. "Fred Hutch has a strong cell-therapy research team," he said, "and I've been talking to some of my colleagues about collaborating. For example, how can we tailor cell therapy specifically to prostate cancer and make it a readily available, off-the-shelf therapy? Developing new therapy regimens is an essential goal for us at Fred Hutch. With prostate cancer, there is still so much to learn."

Everyone has two copies of the BRCA1 and BRCA2 genes which are important for protecting against cancer, but some people inherit a damaging variant, also called a mutation, that prevents one of the two genes from working normally. When this happens, it increases the risk for developing certain types of cancers.

Inherited mutations in BRCA1 or BRCA2 are known to increase the risk of breast and ovarian cancer in women, yet men can also carry these same mutations, increasing their chances of developing prostate, pancreatic and other cancers. About one in 400 people carries a BRCA1 or BRCA2 gene mutation. Parents, siblings and children of a person with the variant have a 50% chance of sharing the same mutation.

The lifetime risk for prostate cancer among men is about 13%, yet the risk to men carrying an inherited BRCA2 mutation can be up to 9 times higher. But only about one-tenth of men get genetic testing compared to women, even though half of the people who carry these risk genes are men.


"The history of BRCA1 and BRCA2 has been so female-focused," said Dr. Heather Cheng, director of the Fred Hutch Prostate Cancer Genetics Clinic, "so we have more resources and infrastructure designed for women. Celebrities like Angelina Jolie, who chose to manage her cancer risk through preventative surgery, help amplify public awareness. But there is no comparable male spokesperson."

A critical gap to fill

Not only do people associate the BRCA1 or BRCA2 mutation with breast and ovarian cancer, but many believe it can be inherited only through the mother's side. "Both men and women can inherit a cancer risk variant," said Cheng. "Individuals can share the variant with blood relatives such as sons and daughters, brothers and sisters."

Cheng encourages men to be more aware of their family cancer history and share this information with their doctor. Once a male carrier of a BRCA1 or BRCA2 variant is identified, the opportunity for early detection and risk management can be better tailored to match the risk. Without knowing the family history, health care providers may not offer genetic testing — and an opportunity may be lost.

Cheng's team is currently studying how to reduce barriers to genetic testing. For example, some men may avoid testing because of high out-of-pocket costs although insurance coverage for genetic screening has improved substantially. Others may have concerns around privacy issues. "We are

trying to understand these concerns and overcome them," said Cheng, "so we can encourage more at-risk individuals to get genetic testing and better manage their risk."

Thanks to Cheng's work with the National Comprehensive Cancer Network, national guidelines for screening have been updated with more emphasis on men with a family history of cancer. This may lead to a better understanding of cancer-causing genes and, in some cases, to targeted treatments such as the SWOG 2210 clinical trial developed by IPCR researchers.

Early detection and screening

For the past decade, Cheng has been instrumental in numerous studies focused on inherited genetics and its impact on prostate cancer. The GENTleMEN study, shorthand for Genetic Testing for Men with Metastatic Prostate Cancer, which ended in 2024, offered free web-based genetic testing to men with advanced prostate cancer.

GIFTS (Genetic Information to Inform Treatment and Screening) helps identify men in Washington state who might benefit from genetic testing. "In the past, these individuals may not have been found," said Cheng. "Now they're getting tested and we're finding more BRCA1 and BRCA2 carriers. We'll also study how BRCA1 and BRCA2 interacts with other genetic factors. Not all carriers of BRCA1 and BRCA2 get cancer so we are eager to know what the protective factors are."

"About one in 400 people carries a damaging variant in the BRCA gene linked to increased cancer risk."

Another clinical trial called PATROL focuses on men with inherited DNA repair mutations who are at higher risk of prostate cancer. Participants must be 40 years or older and carry an inherited prostate cancer risk gene such as BRCA1, BRCA2 or others. The men are followed annually for early detection and monitored for progression. Researchers are also investigating lower PSA thresholds and incorporating MRIs and new blood and urine tests to find prostate cancer as early as possible.

With the help of PROMISE — a registry of patients with inherited gene mutations — scientists will learn more about the role these genes play in improving health outcomes.

"Family history wasn't always so explicit in the prostate guidelines," said Cheng, "but that's changing. If we can understand the genetic risk better, we can better educate patients, families, even healthcare providers about screening techniques and treatment interventions."

Coming together to support cancer research

It was an unseasonably warm night in early June when approximately 400 Institute for Prostate Cancer Research supporters gathered in Victory Hall at The Boxyard in Seattle. And like the temperature outside, the energy in the room was high.

The occasion was Mission Possible, an event billed as a fundraising dinner to accelerate prostate cancer breakthroughs. In reality, it was a celebration of the groundbreaking progress that IPCR's researchers have made on behalf of patients and their families over the past two decades, as well as a sneak peek at the next opportunities for discoveries.

"To be in a room with this many committed and passionate supporters of cancer research is extraordinary and something we can be incredibly proud of," said Dr. Thomas J. Lynch Jr., president and director of Fred Hutch and holder of the Raisbeck Endowed Chair.

One of those passionate supporters was Bill Laing, a 73-year-old native of Scotland who was diagnosed with prostate cancer four years ago and treated at Fred Hutch. Reserved by nature — you're more likely to hear him yelling at a Seattle Sounders soccer match than broadcasting details of his personal life — he's decided to "be noisier" about his experience with cancer. Both of his parents died of cancer at a time when "you really didn't talk about it, even though the person was going through hell."

That noise has included both providing moral support to a friend who was recently diagnosed as well as generous financial support for research at Fred Hutch and UW Medicine. "I went through this," said Laing, "and I'd like to see prostate cancer go away."

Laing and other attendees got a preview of next steps from Dr. Pete Nelson, IPCR scientific director, vice president of precision oncology, director of the Stuart and Molly Sloan Precision Oncology Institute, and the Sloan Precision Oncology Institute Endowed Chair at Fred Hutch. They include: focused ultrasound for localized cancer in lieu of prostatectomy, testing treatments on a patient's "digital twin" generated by artificial intelligence, and even a therapeutic prostate cancer vaccine designed to prevent recurrence.

Of course, these are just a handful of the potentially world-changing projects that IPCR's deep bench of researchers plan to pursue in the coming years — all part of its ambitious initiative to raise \$100 million fueled in large part by community members like you.

Collective action can accelerate discovery

The importance of coming together to support cancer research was one of the themes of keynote speaker Rick Steves' heartfelt

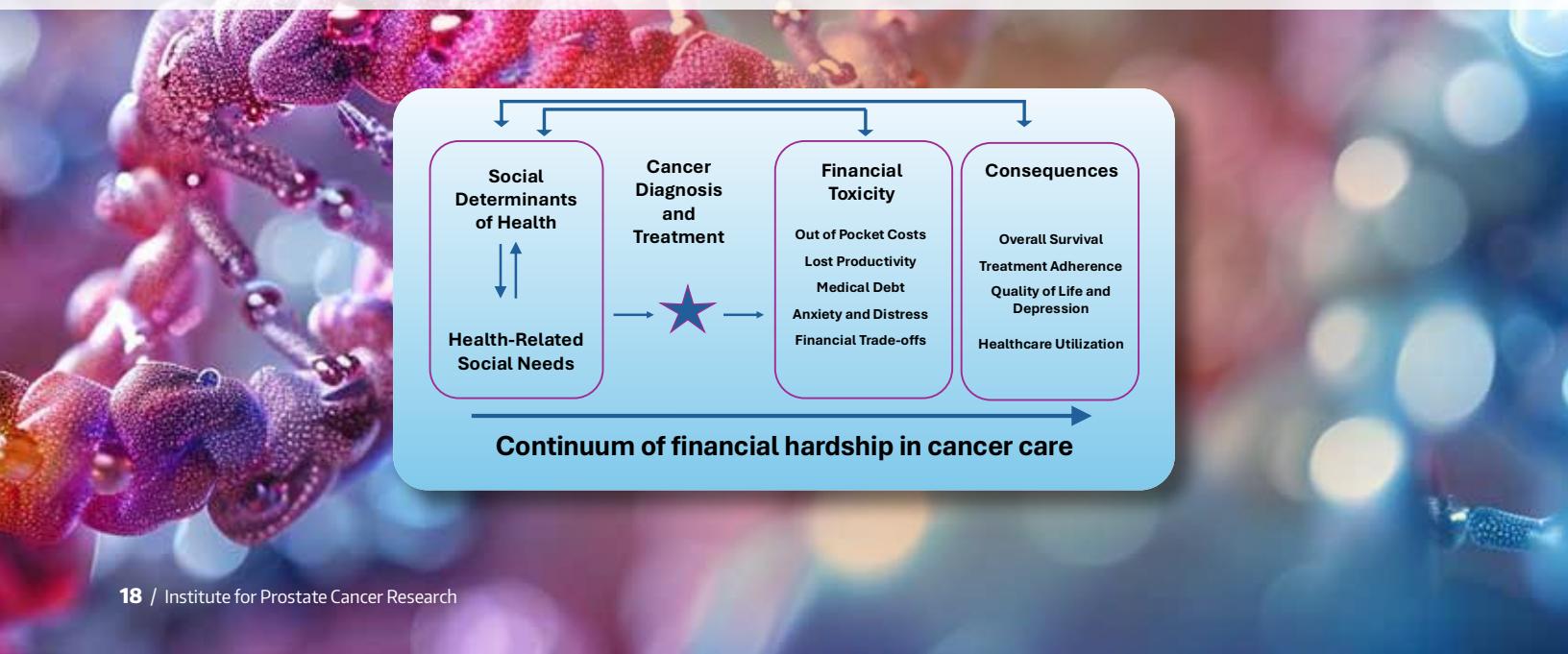
"I believe I'm here, cancer-free, thanks to Fred Hutch," said author, TV personality and renowned travel guide Rick Steves."

and at times hilariously candid remarks. Steves was introduced by his surgeon, Dr. Dan Lin, IPCR director, chief of urologic oncology, and holder of the Pritt Family Endowed Chair in Prostate Research at UW Medicine. Author, TV personality and renowned travel guide, Steves opened up about his 2024 prostate cancer diagnosis, his subsequent treatment and the "little indignities" that he and other patients experienced along the way. But then it was time to get serious.

"I believe I'm here, cancer-free, thanks to Fred Hutch," Steves said. Advances in medical treatment, he reasoned, are just like improvements in the tours he leads. Little experiments — a slight change to the route here, a different order of stops there — add up over time to produce a better experience for future travelers. And when patients with cancer undergo new therapies, they're making things just a little bit better for the next group. "We are learning continually," said Steves. "This is a beautiful ongoing process, and people in the future are going to be beneficiaries just as we are today."

The event chair, retired CEO of United Way of King County Jon Fine, built upon Steves' message of collective action in asking the crowd to give and give big, reminding them that their gifts would do more than fuel leading-edge research at IPCR. They would also help build momentum for the Campaign for Fred Hutch, as it raises \$3 billion to redefine cancer and infectious disease for generations to come.

"I hope every one of you will contribute to our effort because we have big ambitions," said Fine, who is also a patient. "Fred Hutch is in the business of changing what once seemed impossible to things that are actually possible."


Event attendees proved the power of collective action by heeding the call. Spurred by a challenge gift from longtime supporter Pamela Lopker, they came together to raise more than \$4 million — bringing IPCR more than a quarter of the way toward meeting its \$100 million fundraising goal, which will dramatically speed up the pace of discovery. Just as inspiring is the breadth of support for the initiative: Since the start of the Campaign for Fred Hutch, more than 720 donors have given to IPCR.

Days after the event, Bill Laing was still buzzing — in his own understated way. He appreciated Rick Steves' candor and was impressed by the vision laid out by Drs. Lin and Nelson. But most of all, he was excited about the future. "Quite often, organizations don't want to say they're striving for a cure," he said. "But that's the boldest part of IPCR's mission: They want to find a cure."

THE HIDDEN BURDEN OF CANCER

Prostate cancer patients face an array of financial hardships that can significantly impact health outcomes.

Newer and more expensive drugs, along with improved survival rates and longer treatment regimens, often mean huge financial burdens. Patients not only face rising premium costs and higher deductibles, but those who take oral drugs may be hit with higher co-payments, as well. Individuals who thought they had a good insurance plan find themselves suddenly underinsured.

Other ancillary costs associated with treatment — for example, travel, meals out and child care expenses as patients go back and forth to clinic and infusion appointments — can be substantial. Some patients miss work, take unexpected sick days or go on unpaid leave — a track record that may impact promotions and raises down the line.

These money concerns are on top of the psychological aspects of the diagnosis — anxiety, depression, fatigue and reduced quality of life.

Studies have shown that patients with cancer incur more debt, are two-and-one-half times more likely to file for bankruptcy, and are 71% more apt to face foreclosures, tax liens, delinquent mortgage payments or repossessions than individuals without cancer. Even more alarming, patients with prostate cancer who experience these kinds of adverse events have almost twice the mortality risk.

Dr. Hiba Khan, an assistant professor who joined the Fred Hutch Cancer Center in 2023, studies financial hardship and its impact on prostate cancer patients. "We have a lot of data showing that patients who experience negative financial impacts from their cancer diagnosis, also known as financial toxicity, tend to do worse in terms of outcomes," said Khan. "Their mood is worse, their anxiety and depression rates are higher. They are less likely to stay on a treatment that's prescribed to them by their doctor because they can't afford the cost."

A significant barrier to getting financial help is the reluctance of some patients to admit they are having money issues. Although it may be awkward at first, Khan believes that's where the clinician needs to step up.

"Although we are not trained to have these conversations," she said, "that's part of treating the whole patient. That means understanding their financial situation and limitations in the same way you would ask them about their health history. Patients often won't bring up financial concerns unless you ask — and then you learn a lot about what's going on right below the surface."

Once that information is shared, appropriate solutions can be found. "We have patient navigators and social workers," said Khan. "We have financial assistance programs and support services available. But those don't kick in if we don't know the financial hardships a patient is facing."

"Patients experiencing adverse financial events, such as foreclosures or tax liens, have almost twice the mortality risk."

Expanding access to care

Many of Khan's research interests stem from her background in public health; she earned a Master in Public Health from the University of Arizona before she transitioned to medical school. "Although I enjoyed the public health coursework, I found myself wanting to interact more with patients one-on-one," she said. A residency at the University of Washington was followed by a fellowship in hematology and oncology.

In spring 2025, Khan began a new pilot project, funded through an NIH Cancer Center Support Grant, where she will study the use of a remote screening process for patients interested in participating in clinical trials but who live outside the Puget Sound area.

"Patients who want to participate in a clinical trial first have to get a referral and then come all the way to Seattle to meet with one of us," said Khan. "If you live, say, in Eastern Washington, it makes the process longer and more costly. With remote screening, we can keep patients in their communities, getting the care they need. When the time is right for them to enter a trial, we've already eliminated the first step. It makes for a more seamless entry into our programs."

In another new project called REGENT, funded by the Hutchinson Institute for Cancer Outcomes Research (HICOR), Khan will focus on making germline genetic testing not only more accessible but also cost-free. Germline genetic testing is extremely important for some patients since between 5% and 10% of cancers are hereditary. Germline testing not only helps patients better manage their early cancer diagnosis but also helps family members understand their individual risk.

"The team at Fred Hutch is doing a lot of outstanding work in genetics," said Khan. "My role is to make sure people have access to the genetic testing they need. We'll be offering no-cost germline genetic testing to patients currently receiving care at one of our partner clinics as well as a free consultation with the patient's medical oncologist."

Khan is currently looking for community oncology clinics with which to partner as both these pilot projects get underway.

Expanding THE ROLE OF Black men

Early detection is key to managing prostate cancer, in particular for high-risk populations such as Black men. This group is twice as likely to die from prostate cancer compared with others. In fact, the racial gap in prostate cancer death is the largest disparity in cancer-related deaths in the U. S.

If Black men are encouraged to begin annual prostate-specific antigen, or (PSA)-based, screening around the age of 40 to 45, researchers at the Institute of Prostate Cancer Research suggest that mortality rates could drop as much as 30%.

Given the prevalence of prostate cancer among Black Americans, it would seem that early detection guidelines would help support sustained and widespread use of PSA-based screening but the data are lacking. Case in point: Fewer than 3% of patients participating in the two largest screening trials for PSA testing were Black.

"We know that Black individuals are much more likely to be diagnosed with prostate cancer at a young age, have more aggressive forms of the disease, and experience higher mortality rates," said Jenney Lee, IPCR research scientist. "We may know what is happening clinically, but how do we design our research better and involve the people who need to be involved? We need a successful process to design trials that represent the perspectives of these individuals."

This underrepresentation is about to change. In 2022, a team under the direction of Dr. Yaw Nyame, a urologic oncologist, educator and researcher at IPCR, began a three-year project designed to improve the early detection of prostate cancer in Black men. The project, funded by the Patient-Centered Outcomes Research Institute (PCORI), focused on discovering patient priorities around research topics and increasing multi-stakeholder engagement.

The team used interviews with Black men from an earlier pilot project that documented their experiences with PSA testing, prostate cancer screening and diagnosis. "With information from that study, we then worked with a group of patients, research partners and key opinion leaders to come up with a set of topics in the early detection of prostate cancer that may be important to the Black community and other high-risk populations," said Lee.

Next, the researchers put out a call for individuals interested in participating. The response was tremendous: More than 2,100 people joined the virtual research community, providing a broader range of diverse perspectives on prostate cancer through surveys and other web-based activities.

IN PROSTATE CANCER RESEARCH

Of that group, 1,265 were current or former prostate cancer patients, 857 were caregivers or family members, and 184 were members of the community that included researchers, clinicians and people with an interest in the topic. Nearly all (94.4%) identified as Black or African American.

Identifying top research issues

In partnership with BACPAC (Black and African-descent Collaborative for Prostate Cancer ACtion), the team developed a survey aimed at identifying community priorities around the early detection of prostate cancer. Participants who met the inclusion criteria were emailed a unique link to complete the survey online. Of the 1,556 individuals who qualified, about 80% (1,224) of the surveys were completed.

Respondents were asked to rate the importance of 15 research topics and then pare those down to their top three. When the surveys were tabulated, the rankings revealed two "umbrella" areas that crossed over six of the 15 topics. The first revolved around timing: When is the best time for a Black man to start PSA testing and how often should he be screened? The second looked at elevated PSA levels and addressed whether additional tests such as urine, blood or diagnostic imaging, such as a

prostate MRI, could help distinguish between aggressive and non-aggressive cancers in Black men.

According to Lee, the study's outstanding participation rate was not a fluke. It grew out of five years of intensive relationship-building with patients and partners in Black communities locally and nationally.

But it went deeper than that. "It resulted not only from the partnerships that we have with our survivor researchers and advocates," she said, "but also encompassed the relationships our patient partners have in their own communities and with other organizations. It was all due to the power of engagement and collaboration."

The hope is that these findings will lead to studies that bridge the critical gaps existing for Black men in the early detection of prostate cancer. The BACPAC partnership and development of citizen-scientists are building capacity and harnessing engagement to design studies and research plans that will lead to more representation of Black men in clinical trials — a move that IPCR and BACPAC hope will ultimately eliminate racial mortality disparities impacting prostate cancer in the future.

Diet and exercise may be a game-changer in managing prostate cancer

Regular exercise and a healthy diet are important for any individual. Could this combo help prevent or slow down the progression of prostate cancer while improving overall health?

Researchers Marian Neuhouser, PhD, RD, and Jonathan L. Wright, MD, MS, set out to answer that question through two recent studies.

The Prostate Cancer Active Lifestyle Study, or PALS, was a six-month trial of diet and exercise targeted to overweight and obese men who were on active surveillance for prostate cancer. One hundred men completed the study; their median age was 67 and their median BMI (body mass index) was in the obese range.

Participants were placed randomly in one of two groups. The intervention group followed an individualized and structured educational program to see if they could reduce their body weight by 7%. The program included at least 150 minutes of physical activity per week. The second, or control, group received basic dietary and physical activity guidelines as handouts, but were not asked to change any diet or physical activity habits.

The results were encouraging: The intervention group participants had a mean percentage weight loss of 7.1% while the control

group participants had less than 2%. There were also significant improvements in glucose biomarkers. "PALS suggested that prostate cancer patients with overweight or obesity issues can successfully meet weight-loss goals and improve the glucose levels associated with prostate cancer progression," said Wright. "But we also found it's important for patients to receive regular direction if they want to stay on track and meet goals."

When asked about their participation in the study, several men said it had changed their lives and they just felt better overall. This dual benefit of improved health and enhanced quality of life is critical. "PALS showed that older men can make beneficial changes in their weight, physical activity habits, and in what they eat," said Neuhouser, "and they can sustain these changes over time. This regimen may keep the disease from progressing further and help lower cardiovascular and diabetes risk factors."

Triple-A study offers encouraging results

In the second clinical trial, called the Triple-A study, researchers looked at the effects of diet and physical activity on newly diagnosed men with higher-risk prostate cancer who were undergoing radiation therapy and androgen deprivation therapy (ADT).

Although ADT effectively slows the growth of prostate cancer cells, its use can cause an array of side effects, including insulin resistance, abnormal lipid levels, weight gain and muscle loss. These in turn can lead to diabetes, coronary artery disease or blood clots.

As in the PALS Study, the Triple-A team created two groups. The first attended 10 in-person or virtual sessions with a registered dietitian over a six-month period, learning how to modify their diets and eat healthier.

They also participated in two one-on-one sessions with an exercise psychologist where they learned how to complete an aerobics, strength and resistance training program. An additional 21 supervised exercise sessions could be added as an option. Members in the control group, on the other hand, attended one session with a dietitian and were asked to exercise 30 minutes five days a week — which is the standard guideline.

The study's outcomes are promising. Preliminary results suggest that patients in the Triple-A intervention had improved measures of body composition — for example, more lean mass and less body fat in their midsection — than those in the control group. Although data analysis is ongoing, these initial results suggest the Triple-A intervention is working.

"If diet and exercise can help prevent additional metabolic changes caused by ADT," said Wright, "then men receiving these extremely effective interventions can continue to do so without compromising their overall health. This could be a game-changer for managing aggressive or advanced prostate cancer."

Neuhouser, who heads up Fred Hutch's Cancer Prevention Program, and Wright, professor of urology at UW School of Medicine, have collaborated on several research projects over the years. "As a clinician, Jonathan is familiar with the patients and knows their concerns," said Neuhouser. "With his access to medical records, he can determine which patients might be good candidates for a particular study. I'm a nutritional epidemiologist with expertise in study design, study implementation and analysis. So our knowledge base, skills and expertise complement each other really well."

Research shows that about half the men with low-stage, low-grade prostate cancer will see their cancer progress over time. This is a statistic that Neuhouser and Wright want to change through weight management, physical activity and nutrition. "That to me is what cancer prevention is all about," said Neuhouser.

IN THEIR OWN WORDS:

SPOTLIGHT ON NEW FACULTY

RAND WILCOX VANDEN BERG, MD

"My goal is to help patients understand their situation and make the best decisions they can."

Surgeon, researcher, educator and patient advocate, Rand Wilcox Vanden Berg, MD, spent much of his youth imagining a career as a physician, starting at age five when he would watch the hospital drama, ER, with his mother on TV. The Portland native studied biology at the University of Oregon, thinking he would end up as a neurosurgeon. "But when I got to medical school," he said, "I realized my personality better matched the field of urology."

A graduate of Duke University School of Medicine, Wilcox Vanden Berg completed his general surgery internship and urology residency at New York-Presbyterian Hospital Cornell Campus and then a fellowship in urological oncology at Duke University Medical Center. He accepted a UW faculty position in September 2024. "The people are great here and so welcoming," he said. "It's an environment that will give me the opportunities to grow in the ways that I want with people around me who are supportive."

Wilcox Vanden Berg values caring for patients living with cancer. "I am committed to explaining to them the different surgeries and treatments we can offer," he said. "Comfort is often an overlooked part of medical care and yet it's so important. I see my role as a guide, a resource, to determine what they feel is important and combine that with treatments based on the best available evidence. These connections and conversations are incredibly gratifying."

24

RAJITHA SUNKARA, MD, MBA

"I'm honored to bring both a clinical and strategic lens to my work."

Dr. Rajitha Sunkara, MD, MBA, joined Fred Hutch in fall 2023 from Dana Farber Cancer Institute after completing a residency and fellowship at St. Elizabeth Medical Center and Tufts University School of Medicine, and an MBA from the University of Massachusetts. In addition to her clinical practice as a medical oncologist, she serves as the medical director of revenue cycle — a position she describes as "a delicate balancing act."

"I build bridges between physicians, insurance companies and patients," said Sunkara. "My goal is to reduce the financial risk for patients, ensuring they are not paying out of pocket for life-saving treatments and that they receive timely access to the right FDA-approved drugs. For physicians, my team and I help reduce the administrative burden associated with insurance approvals, denials and appeals. This helps them focus more on patient care and less on paperwork."

With this unique blend of medical expertise and operational insight, Sunkara is helping transform how Fred Hutch delivers care. "I'm not just a patient advocate," she explained "because in the end advocating for patients also supports Fred Hutch. Ensuring reimbursement for therapies not only sustains our ability to deliver high-quality care but also helps fund the research that leads to the next breakthrough. Cancer is a heavy word and there's so much emotion behind it. Connecting with my patients and helping them navigate that journey is a great privilege."

RUBEN RAYCHAUDHURI, MD

"I chose prostate cancer because of the breadth and spectrum of the disease, which offers so many exciting areas of research."

"I've always been interested in medicine and science," said Ruben Raychaudhuri, MD, who grew up on Mercer Island, went to Whitman College and attended the Medical College of Wisconsin and the University of Pennsylvania before returning to the Northwest to complete a three-year hematology-oncology fellowship at Fred Hutch. "During my fellowship, I worked with some of the more senior researchers and became interested in collaborative science and the unique aspects of patient care demonstrated in the Genitourinary Department. In October 2024, I joined the faculty."

According to Raychaudhuri, taking care of patients with prostate cancer can be challenging but it also offers a host of interesting avenues of thought and study. "Prostate cancer research looks at ways we can best personalize treatments for each patient," said Raychaudhuri. "This type of thinking is unique to prostate cancer. In most other cancers, the therapy is more 'protocolized.'"

In May, Raychaudhuri received a coveted Young Investigator Award from the American Society of Clinical Oncology for his research into optimizing a drug target for prostate cancer cells — work that is ongoing today with IPCR colleagues Michael Haffner and Michael Schweizer. "This research focuses on whether a certain drug used to coax prostate cancer cells in mice into expressing PSMA (prostate-specific membrane antigen) can work the same way in humans," he said. "In another project, I am studying genomic predictors of poor outcomes to help us stratify patients better for more aggressive up-front interventions."

ROSA NADAL RIOS, MD, PhD

"Being part of a team committed to helping patients live longer and better keeps me motivated."

Dr. Rosa Nadal Rios is a medical oncologist who came to Fred Hutch in November 2024 after spending eight years at the National Institutes of Health in Bethesda, Md. She earned an MD and a PhD from the Universitat Autònoma de Barcelona and completed fellowships at both Johns Hopkins and NIH. "I chose Fred Hutch because of its excellent reputation and its strong research program in cellular therapy," she said. "The researchers are very experienced in this field, plus we have younger members who bring new ideas and new ways of doing things."

Growing up in a small town where Catalan was her first language, Nadal Rios was inspired by the dramatic social changes and educational opportunities afforded to women in the post-Franco era. "The generation before mine grew up in a dictatorship, so they wanted something different for their kids, especially the girls," she said. "Women started traveling, going to college. It was the beginning of a new era, a kind of flowering of our country, and my interest in science was encouraged."

Nadal Rios' research focuses on immunotherapy-based cancer cell treatments where, as she explained, "we take immune cells from the patient — the cells that fight cancer — and modify them in the lab so they become even more effective and then re-infuse them into the patient. We're currently conducting trial tests to see if this cellular therapy will better target prostate tumor cells. There's a lot of complexity in the process but I feel all of us working together can accomplish great things."

Report to the Community / 25

Honor Roll of Supporters

Donations received between April 1, 2022, when our \$100 million dollar fundraising initiative to expand research and discovery was launched, and September 1, 2025.

\$5,000,000+

Anonymous

\$2,500,000-4,999,999

Stephen and Rita Anderson

Lopker Family Foundation

\$1,000,000-2,499,999

Michael and Lynn Garvey

Larry and Virginia Gordon

\$500,000-999,999

Jonathan Fine and Paula Selis

Jennifer P. Rishel Estate

Prostate Cancer Foundation

Barbara Stephanus

Gary and Lark Young

\$250,000-499,999

Anonymous

Scott and Paula Atkison

Kristianne and John Blake

Ellison Foundation

Thomas and Mary Herche

Robert J. Kleberg Jr. & Helen C. Kleberg Foundation

Robert and Ann Vessella

\$100,000-249,999

Anonymous

James and Catherine Allchin

Courtni and Charlie Billow

Color Foundation

Crystal Springs Foundation

Diamond Parking Inc

Robert and Lizbeth Dobler

Doris Duke Foundation

Karl Ege and Constance Adams

Conceicao Farias and Jerry King

Harmony Capital

Bill Laing

Stewart M. Landefeld and Margaret M. Breen

Lochness Revocable Trust

Donny Luu

John and Deborah Meisenbach

Timothy and Elizabeth Merck

George and Elise Orban

National Philanthropic Trust

Dr. Peter S. Nelson and Molly Rothwell

Penny Lynn Jensen Testamentary Trust

Charles and Maria Schweizer

Sunbridge Foundation

The Seattle Foundation

The V Foundation for Cancer Research

Faculty

POPULATION SCIENCE & TRANSLATIONAL RESEARCH

Burcu F. Darst
PhD
Assistant Professor

Ruth B. Etzioni
PhD
Professor

Sander B. Frank
PhD
Research Assistant Professor

Taran S. Gujral
PhD
Associate Professor

Gavin Ha
PhD
Associate Professor

Haolong Li
PhD
Assistant Professor

Marian L. Neuhouser
PhD, RD
Professor

Jeannette M. Schenk
PhD, RD
Senior Staff Scientist

Janet L. Stanford
PhD
Professor Emeritus

Catherine M. Tangen
DrPH
Professor

Heather H. Cheng
MD, PhD
Professor

Lawrence Fong
MD
Professor

Petros Grivas
MD, PhD
Professor

Andrew C. Hsieh
MD
Professor

Hiba Khan
MD, MPH
Assistant Professor

R. Bruce Montgomery
MD
Professor

Elahe A. Mostaghel
MD, PhD
Associate Professor

Rosa Nadal Rios
MD, PhD
Associate Professor

Peter S. Nelson
MD
Professor

Ruben Raychaudhuri
MD
Assistant Professor

Michael T. Schweizer
MD
Professor

Rajitha Sunkara
MD, MBA
Assistant Professor

Todd A. Yezefski
MD, MS
Assistant Professor

Evan Y. Yu
MD
Professor

Faculty

PATHOLOGY & LABORATORY MEDICINE

Michael C. Haffner
MD, PhD
Associate Professor

Michael R. Folkert
MD, PhD
Professor

Colin C. Pritchard
MD, PhD
Professor

R. Alex Hsi
MD
Clinical Assistant Professor

Maria Tretiakova
MD, PhD
Professor

Jay J. Liao
MD
Associate Professor

Lawrence D. True
MD
Professor Emeritus

T. Martin Ma
MD, PhD
Assistant Professor

Funda Vakar-Lopez
MD
Clinical Professor

Omar Y. Mian
MD, PhD
Associate Professor

Jacob E. Valk
MD
Assistant Professor

RADIATION ONCOLOGY

Jonathan J. Chen
MD, PhD
Assistant Professor

Winston Vuong
MD
Assistant Professor

Jing Zeng
MD
Professor

RADIOLOGY

Delphine L. Chen
MD
Professor

Hung-Ming Lam
PhD
Research Associate Professor

Amir Iravani
MD
Associate Professor

Paul H. Lange
MD
Professor Emeritus

Antonio Westphalen
MD
Professor

Daniel W. Lin
MD
Professor

UROLOGY

Eva Corey
PhD
Research Professor

Colm M. Morrissey
PhD
Research Professor

Atreya Dash
MD
Associate Professor

Yaw A. Nyame
MD, MS, MBA
Associate Professor

Claire de la Calle
MD
Assistant Professor

Sarah P. Psutka
MD, MSc
Associate Professor

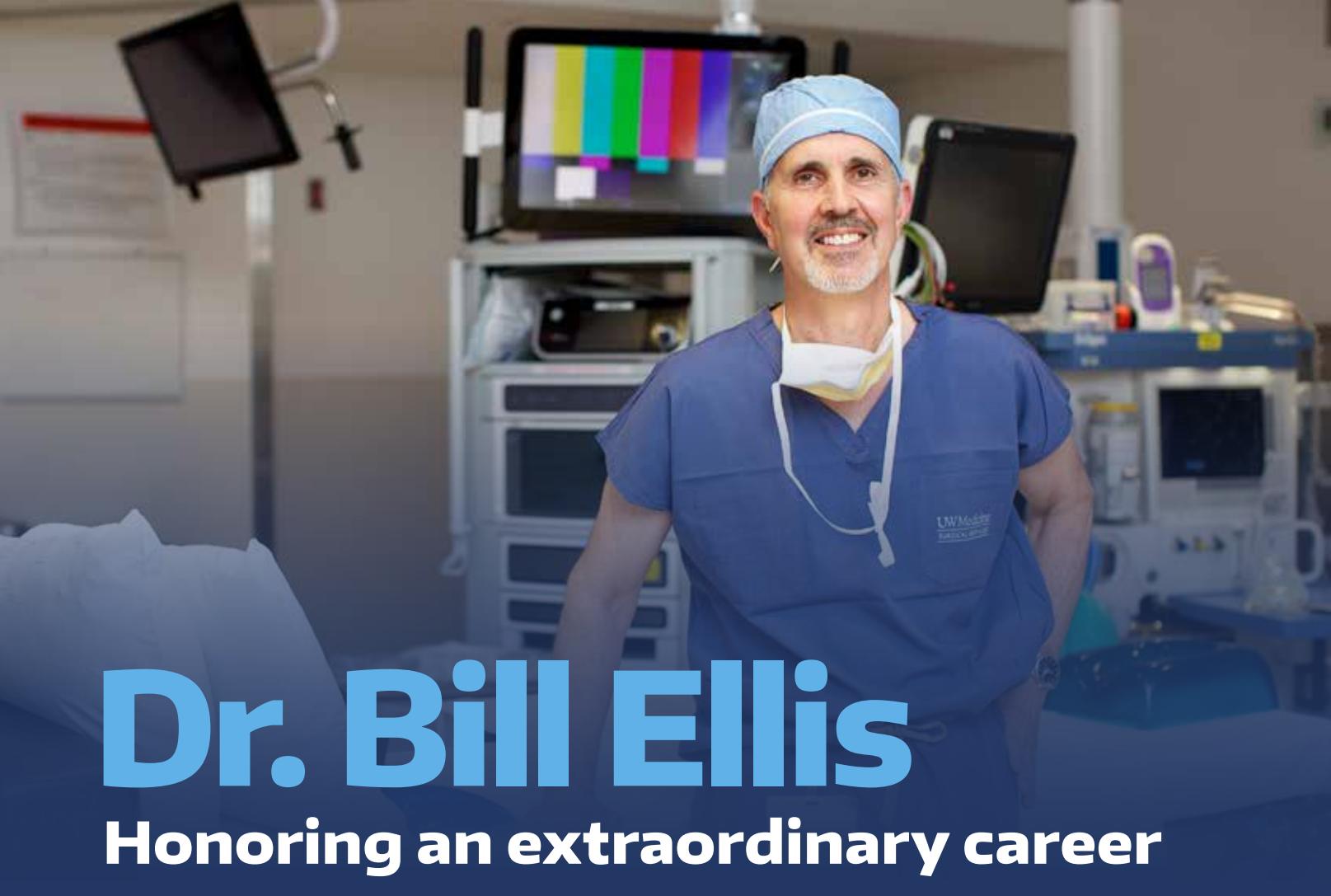
William J. Ellis
MD
Professor

George Schade
MD
Associate Professor

John Gore
MD, MS
Professor

Rand Wilcox Vanden Berg
MD
Assistant Professor

Jonathan L. Wright
MD, MS
Professor


Li Xin
PhD
Professor

ENDOCRINOLOGY & TRANSLATIONAL RESEARCH

Stephen R. Plymate
MD
Professor

Dr. Bill Ellis

Honoring an extraordinary career

After 34 years of compassionate patient-centered care, Dr. Bill Ellis is retiring from clinical practice. To recognize his many contributions as a prostate cancer surgeon, a number of his grateful patients and their families have chosen to honor him by establishing an endowment at UW Medicine.

Thanks to these generous donors, led by Stewart Landefeld, we recently established the William J. Ellis, MD, Endowed Honorary Faculty Fellowship in Urologic Oncology. Managed by the University of Washington, the endowment will help recruit and retain distinguished faculty in the Department of Urology and will serve as an enduring celebration of Ellis' extraordinary and long-lived career.

Ellis spent more than three decades caring for patients, performing thousands of surgeries, and teaching residents and fellows the art and science of urologic surgery. He is a recognized expert in several procedures, including nerve-sparing open prostatectomy, robotic-assisted laparoscopic prostatectomy, and prostate brachytherapy.

In addition to his surgical expertise, he also made significant contributions to prostate cancer research, advancing our understanding of this disease and bringing us closer to a cure.

Ellis received his medical degree in 1985 from the Johns Hopkins School of Medicine in Baltimore, followed by a urology residency at Northwestern University Medical School in Chicago. He joined the faculty at UW Urology in 1991.

Please join us in this important effort by making a contribution to the William J. Ellis, MD, Endowed Honorary Faculty Fellowship in Urologic Oncology.

Scan QR code for more information
or contact: **Lindsey Antos, Associate
Director, Philanthropic Gifts**
lantos@fredhutch.org | 206.667.2159

Making the seemingly impossible possible

It is an honor and privilege for me to chair the fundraising effort for the Institute for Prostate Cancer Research, a joint venture of two great institutions, Fred Hutch Cancer Center and UW Medicine.

The work these two organizations do and their accomplishments over the years under the outstanding leadership of Paul Lange have been exceptional, leading to significant advances in treating prostate cancer and medicine in general. Today, the groundbreaking work going on under the visionary leadership of Dan Lin and Pete Nelson is even more extraordinary and carries enormous potential.

It is believed that one in eight men in America will get prostate cancer, and one in 44 will die from it. However, it is not just a disease of men; families are hugely impacted. But none of that needs to be the case. The people, programs and scientific research going on at IPCR right now are poised to transform the nature of prostate cancer. When that happens, it will enable men to live longer lives and — along with their families — to live improved lives, and prostate cancer will be cured.

We are also facing some difficult headwinds. Our federal funding is being threatened and potentially curtailed. While that is worrisome, we don't have to stand by idly. Our philanthropic efforts and the support of donors like you will enable our leading-edge research, innovation and progress to continue.

To date, we have raised more than \$26 million — more than one-fourth of our way to our \$100 million fundraising goal. As part of that effort, we held an event in June called Mission Possible, raising \$4.4 million that night alone. This hugely successful event was made possible with the help of the outstanding Fred Hutch

staff, the support of our active and engaged Fundraising Council and Advisory Council, and the contributions of many of you.

For years, Fred Hutch, UW Medicine and IPCR have made the seemingly impossible actually possible. I have had a front row seat in observing both the compassionate care and the far-reaching innovation at IPCR. In both my business profession and my philanthropy career, I have seen some excellent investment opportunities, and I believe the investment opportunity at IPCR today is among the very best I have ever seen.

We will not rest until we reach our goals — to impact individuals and families facing prostate cancer and to advance overall cancer research in our community and the world. One day, in the not-very-distant future, it will mean that no one has to face the scourge of prostate cancer.

Please join me in learning about and investing in IPCR. Amid our various challenges, it will make our world a better place.

Jon Fine
Chair, IPCR Fundraising Council

To learn more about the Institute for Prostate Cancer Research or to make a gift, please contact:

IPCR Program Coordinator, ipcr@uw.edu

Fred Hutch IPCR Philanthropy, ipcr@fredhutch.org

Fred Hutch is an independent, nonprofit organization that also serves as the cancer program for UW Medicine. Our relationship allows for enhanced care coordination between a top-ranked cancer center and a leading integrated health system and accelerates the latest scientific breakthroughs in cancer and other life-threatening diseases.

Fred Hutch is proud to raise funds that fuel the adult oncology program on behalf of both Fred Hutch and UW Medicine.

