Investigation of tissue-specific genetic alterations in prostate and bladder cancer

Tanushri Kumar1,2, Shan Li1, Alicia Wong1, John K. Lee1,3
1Fred Hutchinson Cancer Research Center, Seattle, WA, 2Oregon State University, Corvallis, OR, 3University of Washington, Seattle, WA

Background

- Prostate cancer (PCa) and bladder cancer (BCa) are both genetically diverse.
- Next-generation sequencing technologies have identified numerous genetic alterations associated with both cancers.
- The complex and dynamic nature of cancer heterogeneity leads to a challenge in clinical practice during the stratification of patients into low-risk and high-risk treatment.
- Different cell and tissue types have different responses to genetic oncogenic drivers.
- It is important to investigate the common and tissue-specific genetic alterations in both cancer types for development of effective treatments.
- In this study, we have selected 14 tumor suppressor and oncogenes that are recurrently altered in PCa and BCa (Figure 1) and will characterize PCa and BCa tissue-specific responses to these oncogenic factors.

Figure 1: Recurrently mutated genes associated with either PCa or BCa or both.

Methods

Generation of barcoded lentiviral constructs

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation of lentiviral library</td>
<td>Transduction of mouse prostate organoids with pooled lentivirus</td>
<td>Transduction of mouse bladder organoids with pooled lentivirus</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Figure 2: (a) 14 recurrently altered genes found in prostate cancer, bladder cancer, or both; (b) Lentiviral constructs for loss of function (shRNAs) and gain of function (ORFs).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 4: (a) Mouse prostate organoids 72 hours after transduction. (b and c) Quantification of transduction efficiency by flow cytometry. BF: brightfield; GFP: green fluorescent protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 5: (a) Mouse bladder organoids 72 hours after transduction. (b and c) Quantification of transduction efficiency by flow cytometry. BF: brightfield; GFP: green fluorescent protein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Transfection of 293T cells with lentiviral constructs

Figure 3: Transfection of 293T cells, monitored by GFP fluorescence.

Discussion and Future Plan

- We have generated a lentiviral pool encoding 14 recurrently mutated genes in either PCa or BCa or both.
- The titer of pooled lentivirus was determined by transducing mouse prostate and bladder epithelial organoids followed by flow cytometry.
- We will examine lentiviral representation in the pool by bulk DNA amplicon sequencing.
- The optimized lentiviral pool will be used for tissue-type specific assay.

Acknowledgements

- This work is funded by the Department of Defense. W81XWH-19-1-0569. The Summer Undergraduate Research Program is supported in part by the Cancer Center Support Grant (CCSG) SUPRE Supplement: NCI 3P50CA105704, the Fred Hutchinson Internship Program, and individual lab/research groups.
- Special thanks to Dr. John Lee and Dr. Shan Li for their guidance and mentorship through this project.
- Thank you to Alicia Wong for providing bladder organoids and bladder lentiviral vectors.