Cancer-Related Cognitive Dysfunction

Myron Goldberg, PhD, ABPP-CN
Clinical Neuropsychologist
Department of Rehabilitation Medicine
• No financial disclosure or conflicts
Overview

• Focus today will be on systemic, non-CNS cancer conditions
• Overview of cancer-related cognitive dysfunction
• Etiology considerations
• Management strategies
Cancer Treatment

• Balance between treatment outcome and side effects

• Side effects: historically focused largely on physiological symptoms, like:
 • Nausea
 • Appetite loss
 • Fatigue
 • Vomiting
 • Anemia
 • Hair loss
 • Pain

• More recent focus on quality of life
 • Satisfaction
 • Neurocognitive functioning - “Cancer treatment-related cognitive dysfunction (or impairment)”
Risk Factors for Cognitive Dysfunction in Cancer

• Location of cancer
 • Brain (primary/metastasis tumor)
 • Organs with effects on brain functioning
 • All others (e.g., breast, prostate)

• Treatments
 • Surgery
 • Radiation therapy
 • Medication
 • Chemotherapy
 • Immunotherapies
 • Hormone therapies
“Chemobrain”

• Does it exist?
• If yes, what’s it etiology?
• What kinds of cognitive problems arise?
• How long does it last?
What Does the Research Say?

• Across studies, self-reported cognitive difficulties in persons with various systemic cancers and receiving chemotherapies have varied greatly: typically, 50% - 90%

• However, research using performance-based testing commonly show a lower frequency of patients with cognitive impairment.
 • E.g., Impairment also varies across studies, but often is no more than 50% over the course of treatment.

• Difference in frequency between self-report and formal testing thought to be related to:
 • Difference in “reference points” —
 • Patient self-report often references “noticed declines”
 • Research studies reference operationally defined “impaired ability” (e.g., 2 or more tests ≤ -1.5 standard deviations from normative mean)
 • Question of sensitivity of performance-based tests
 • Transient increased effort on tests / compensatory brain activity helps to achieve a good level of test performance
 • Self-reported cognitive symptoms more correlated with mood and anxiety
Question of Etiology

• Is it all just chemotherapy?

• Yes and no.......

• It’s typically *multifactorial*!
 • Several factors can influence a person’s cognitive functioning
Predicting Cognitive Functioning Problems: It’s Not that Easy!
The Biopsychosocial Model

- Biological
- Social
- Psychological
 - Cognitive Functioning
The Complexity of It All – Pre-treatment Cancer Effects?

- Women with breast cancer: 11 to 35% had cognitive dysfunction (Cimprich et al 2010)
 - Patients showed reduced efficiency in attention and working memory compared to healthy controls
 - fMRI results – differences in attention/working memory circuitry during more demanding task
- Acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) (Meyers et al., 2005)
 - 41-44% deficits in memory functioning
 - 28% diminished cognitive processing speed
- Colon cancer (Cruzado et al 2014)
 - 37% demonstrated some form of “cognitive impairment” prior to chemotherapy
- Prostate cancer (Buskbjerg et al 2020)
 - 57.5% of untreated patients met criteria for clinically significant cognitive impairment

- Possible Reasons:
 - Inflammatory processes
 - Meyers et al (2005) – positive correlations between proinflammatory cytokine activity and cognitive dysfunction, fatigue and ratings of quality of life in pts with AML and MDS
 - Autoimmune mechanisms / paraneoplastic processes - syndromes
 - Hormonal changes – e.g., changing levels of testosterone in prostate cancer
 - Other medications
 - E.g., pain medications
 - Concomitant medical conditions
 - Emotional functioning / fatigue
 - A number of studies (e.g., Jenkins et al 2006):
 - Stronger relationship between self-reported cognitive impairment and disturbance in mood and fatigue than self-report and objective cognitive test results

- Gives rise to the need for well-controlled studies
Addressing the Complexity of Chemotherapy Effects

• International Cognition and Cancer Task Force (ICCTF):
 “Recommendations to Harmonize Studies of Cognitive Function in Cancer Patients,”
Wefel at al. (2011), *The Lancet Oncology*, 12 (7): 703-8

• Best studies are those that:
 • Longitudinal – compare pre-treatment and post-treatment measurement of cognitive functioning
 • Use of good comparison groups
 • Not just healthy controls, but where possible patients with similar conditions, except the same treatment (e.g., no chemotherapy)
 • Use of well-validated performance-based measures of cognitive functioning
 • Self-report is useful, but less reliable
 • ICCTF prescribes a set of tests (core battery), that can be repeated over time and can be supplemented with other tests
 • Verbal memory – word list test
 • Verbal fluency – letter
 • Psychomotor speed & executive functioning
 • Additional tests – working memory
Longitudinal Studies: Breast Cancer

- **Wefel et al (2004) – one of the first prospective studies on chemotherapy**
 - Early-stage breast cancer survivors
 - Measurement: pre; 3-weeks post; 1-year post neuropsychological testing
 - Findings:
 - Pre-chemo (baseline):
 - 33% showed impairment
 - 3-weeks post treatment:
 - 61% showed evidence of decline in one or more cognitive areas
 - 1-year post:
 - 50% with initial decline improved
 - Rest remained stable – i.e., ~ 30% showed persistent declines

- **Breast cancer – hormonal treatment**
 - Tamoxifen Exemestane Adjuvant Multinational (TEAM) Study (Schilder et al, 2010)
 - Prospective study of postmenopausal patients who did not receive chemotherapy
 - Compared tamoxifen, exemestane, healthy control groups
 - Measurement times: Immediate after breast surgery – before start of endocrine tx (T1); after 1-year of endocrine tx (T2)
 - Eight cognitive domains assessed with neuropsychological tests
 - Findings:
 - At T2 (after adjusting for T1 performance):
 - Tamoxifen group:
 - < exemestane group on processing speed
 - < healthy controls on verbal memory and executive functioning
 - Exemenstane group = healthy controls

- **Updated study by Wefel et al (2010)**
 - Essentially replicated findings from 2004 study
 - Also – nearly a third showed new decline at the 1-year measurement point
 - Vast majority showed only one cognitive area affected
Longitudinal Studies: Other Groups

• **Bone marrow transplant: Harrison et al (2021): Review paper**
 - Pre-transplant: up to 50% of patients exhibit impairment in one or more cognitive domains
 - 1-month post transplant: nearly 50% of patients experience decline from their pre-transplant baseline
 - Long-term: mixed trends

• Allogenic transplant patients appear to be a greater risk than autologous patient for chronic cognitive impairment
 - 3-5 years post transplant:
 - Allogenic group: 35%-40% showed evidence of persistent impairment
 - Autologous group: 19%
 - Trends maybe in part related to type of cancer
 - E.g., gains evidenced on tests of verbal fluency at 12 and 18 months in patients with chronic myeloid leukemia but not in those with myelodysplastic syndrome

• **Across other forms of non-brain cancer results for relationship between chemotherapy and cognitive functioning have varied**
 - For example:
 - Small cell lung cancer study (Whitney et al; 2008)
 - 62% showed some form of cognitive decline 1 month after chemotherapy
 - At 7 months post chemotherapy nearly total resolution for most
 - Review of advance prostate cancer studies – hormone therapy (Nelson et al; 2008)
 - 9 studies from 2002 to 2006: nearly all with small sample sizes
 - Compared pre-treatment to 6 to 12 months post-treatment
 - Conclusions:
 - 47% to 69% of men showed “subtle but significant declines” in one or two domains (e.g., memory), but not across all cognitive domains.
Typical Reported / Demonstrated Cognitive Problems

• Often the degree of decline is mild
 • But may not be proportional to effect on quality of life and daily functioning – e.g., home or work setting demands
 • E.g., survey of 1600 of mostly breast cancer survivors
 • 75% of respondents reported post-treatment cognitive symptoms
 • 75% of respondents with subjective cognitive symptoms – impacted ability to return to work
• Memory functioning - learning efficiency and memory retrieval
 • Preserved retention
 • Improvement with recognition cues
• Working memory capacity / sustained attention
• Speed of mental processing
• Executive functioning
 • Cognitive flexibility (mental multitasking)
 • Problem solving
 • Verbal fluency (response initiation and organization)
 • Organization and planning

• Frontal-subcortical circuitry disruption
Structural Brain Imaging Studies & Chemotherapy

- Performed mainly in patients with breast cancer – adjuvant therapies

- Brain MRI findings
 - Consistently shown lower grey and white matter volume – frontal and temporal lobes
 - Structural changes correlated with self-reported cognitive difficulties and impairments on testing

- Diffuse Tensor Imaging (DTI)
 - e.g., Deprez et al (2010)
 - Groups:
 - BC – post anthracycline–based chemotherapy (80-160 days post)
 - BC – non-chemotherapy
 - Healthy controls
 - Findings
 - Decreased fractional anisotropy (FA) in frontal and temporal lobes in BC chemo pts compared to other 2 groups
 - Correlated with np findings for attention and processing speed
Functional Brain Imaging & Chemotherapy

- Mixed finding across a limited number of studies – stability of findings

- Ferguson RJ et al., (2007)
 - Brain fMRI study of monozygotic twin sisters (60 y.o.)
 - One with hx of breast cancer and chemotherapy (doxorubicin, cyclophosphamide, docetaxel, ongoing tamoxifen)
 - Other sister no history of cancer

- Little to no differences on cognitive testing. However, sister with cancer reported more cognitive functioning complaints

- Working memory task used: n-back

- fMRI - more spatial activation in typical working memory circuitry (bifrontal and biparietal regions) in sister with cancer

**Top scans: patient

- Deprez et al (2014) – fMRI with breast cancer patients – pre-post design
 - Baseline no differences
 - Decreases in anterior frontal cortex
 - Increases in posterior frontal lobe on multitasking
 - Correlated with subjective and objective executive dysfunction – may reflect impaired working memory and associated compensatory mechanisms.
Chemotherapy Effects: Hypothesized Mechanisms

• **Neural mechanisms underlying cognitive changes – poorly understood**
 • Chemotherapy agents vary by neurotoxicity risk
 • E.g., high risk - 5-fluorouracil, Cisplatin, Cyclophosphamide, Doxorubicin, Etoposide, Methotrexate, Vincristine, Vinblastine

• **Blood-brain barrier damage**

• **Oxidative stress**
 • Reaction to oxygen creates free radicals – lead to cell damage
 • Normal metabolism creates oxidative stress
 • Chemotherapy can induce further oxidative stress

• **Metabolic changes causing inflammatory reactions that injure nerve cells**
 • Increased circulating cytokines

• **Microvascular injury in the brain**
 • White matter may be especially vulnerable

• **Reduced synaptic plasticity - effects on nerve cell generation and repair – e.g., suppression of neurogenesis in hippocampus**

• **Change in hormones**

• **Genetic vulneraries**
 • Certain alleles in the APOE and COMT genes have been associated with increased risk for CRCI

• **Age and Cognitive Reserve**
Conceptual Model of Chemotherapy Effects

Figure 1. Conceptual Model of Chemotherapy-Related Changes in Cognitive Function

Management Approaches
Initial Step – Validation & Assessment

• Query about quality of life – changes in functional status

• Ask if any changes in cognitive functioning are noticed and degree of effect on daily functional status

• Consider using a self-report cognitive symptom measure
 • E.g., Functional Assessment of Cancer Therapy – Cognitive (FACT – Cog)
 • Rate various cognitive abilities on a 0-4 scale
 • Can be used to track perception of cognitive abilities over time in the office

• Consider use of a performance-based cognitive screening test
 • Montreal Cognitive Assessment (MoCA)
 • Mini-Mental Status Examination (MMSE)
 • St. Louis University Mental Status (SLUMS) Exam

• Neuropsychological Evaluation
Neuropsychological Evaluation

- Refer for evaluation – if cognitive problems persist and especially if:
 - Day-to-day functional status is being significantly affected (e.g., work performance)
 - Difficulties seem to be worsening over time
 - Diagnostic issues are present

- Provides objective measurement of cognitive capacities using sensitive measures
 - Attention / Mental Processing Speed / Memory / Communication / Visuospatial Functioning / Executive Functions (Problem Solving, Reasoning, Thinking Flexibility)

- Evaluates emotional / personality / behavioral factors contributions

- Length of evaluation can vary depending on patient and questions to be answered

- Neuropsychological evaluations help to
 - Determine the type and degree of problems
 - Disentangle factors affecting cognitive functioning
 - Helps to determine readiness to return to or engage in certain activities, like work, school, drive
 - Devise a road map for treatment
Treatment Approach

Biopsychosocial Model

Biological

Cognitive Functioning

Social

Psychological

Reversible Causes

Symptom Alleviation
Key Reversible Biopsychosocial Cognitive Dysfunction Risk Factors

Biological
- Concomitant Medical Conditions
- Medications
- Sleep
- Fatigue
- Pain
- Use of alcohol or recreational drugs

Psychological
- Depression
- Anxiety
- Other psychiatric conditions
 - E.g., bipolar disorder

Social
- Perceived social support
- Family stressors
- Work stressors
- Financial stressors
- Housing / basic needs stressors
Addressing Fatigue

• Fatigue:
 • Cancer-related fatigue: physical / cognitive domains
 • Mechanisms not fully understood
 • Across studies, majority of patients report fatigue
 • Prevalence range: 60% - >90% depending on type and course of cancer and treatment
 • Duration varies, but can still be prevalent for many decades after treatment completion
 • Possible inverse relationship with age

• Pharmacological intervention –
 Thong et al (2020): Review of literature in the last 5 years
 • Stimulants
 • Methylphenidate: better than placebo, but modest effects; side effects
 • Modafinil: no better than placebo
 • Erythropoietin – effect in ameliorating CRF if associated with anemia; but safety concerns (tumor regrowth; cardiovascular risks)

• Nonpharmacological interventions - possibly more empirical support:
 • Examined nonpharmacological interventions
 • Exercise: either resistance, aerobic, yoga
 • Psychotherapy
 • Acupressure
 • 471 studies examined; 11 studies included involving 1067 patients
 • Results:
 • Exercise: moderate benefit for both physical and cognitive fatigue
 • Best - resistance combined with aerobic
 • Yoga showed benefits for cognitive fatigue
 • Some evidence for acupressure
 • Psychotherapy; no significant findings; although study selection was thought to be contributory, as other meta-analytic studies found a significant effect
Improving Non-CNS Cancer-Related Cognitive Functioning: Pharmacological Interventions

• Stimulants (methylphenidate):
 • Methylphenidate / modafinil:
 • Mixed results for adults with systemic forms of cancer
 • Improvement in fatigue; but inconsistent changes on tests of cognitive functioning
 • Ongoing RCT with methylphenidate
 • Methylphenidate - better findings with children

• Erythropoietin (tx for anemia)
 • Studied in non-CNS cancer: positive effects on fatigue not conclusively shown so far; side effect risks

• Donepezil (acetylcholinesterase inhibitor)
 • Cites on RCT study on patients with breast cancer Lawrence et al (2016)
 • 24 weeks of donepezil versus placebo
 • Neuropsych evaluation: baseline – 24 weeks
 • Donepezil > placebo on measures of memory functioning
 • No difference on other cognitive functions

• Memantine (NMDA antagonist)
 • No data on non-CNS cancer
Improving Non-CNS Cancer-Related Cognitive Functioning: Non-Pharmacological Interventions

 • Reviewed literature from 2010-2019
 • 29 RCTs identified
 • 10 types of interventions

• National Cancer Institute

• Significant, but typically modest effects compared to control groups
 • Cognitive rehabilitation – modest, but appreciable effects in RCTs on both subjective and objective measures
 • Compensatory training (e.g., external memory aids; pacing; minimizing distractions)
 • Cognitive training (restoration of ability through repetitive training)

• Physical activity / exercise

• Mindfulness-based stress reduction / meditation
Management of Cancer-Related Cognitive Dysfunction

- First steps:
 - Validate
 - Assess type and impact of cognitive symptoms
 - Clinical interview – self-report measure
 - Cognitive screen
 - Neuropsychological evaluation
 - Assess for contributory factors using biopsychosocial model
 - Focus on possible reversible factors
Reversible Factors

Management of Cancer-Related Cognitive Dysfunction

• Consider the need for further evaluation of possible reversible factors
 • Fatigue
 • Sleep
 • Anemia
 • Pain
 • Depression/anxiety

• Judicially, treat reversible factors
 • Pharmacological management of fatigue/sleep/pain/emotional symptoms?
 • Benefit/side effects profile
 • Non-pharmacological management, e.g.,
 • Physical therapy for pain
 • Psychotherapy for depression/CBT for pain/sleep management
Addressing Cancer-Related Cognitive Impairment:

Prescribing Activities to Promote Cognitive Functioning

- Regular exercise
- Dietary changes
- Sleep hygiene strategies
- Participation in stimulating activities
 - Start a new hobby
 - Take a college course
- Continue / increase social interactions
- Stress management, e.g., psychotherapy/yoga classes
Management of Cancer-Related Cognitive Dysfunction

Treating Cognitive Symptoms

- Pharmacological management has yet to be shown to be particularly effective – ongoing research

- Cognitive Rehabilitation
 - Speech Therapy at a rehabilitation center for individual treatment
 - Focus on compensatory strategies
 - Computer-based restorative treatment?

- Consider referral to a Neuro-rehabilitation treatment program
 - Integrative treatment: Rehab Medicine, Speech, PT, OT, Psychology, Rehabilitation Counseling (Vocational Counseling)
Thanks!