# Cardiotoxicities of Contemporary Cancer Treatment







Richard Cheng, MD, MSc
Associate Professor of Medicine/Cardiology
UW/SCCA Cardio-oncology Program
ICOS Center of Excellence
September 2022

#### **Pre-test Question #1**

## Which of the following is true about HER2 targeted therapy and LV dysfunction?

- A. Once LVEF <50%, need to permanently discontinue treatment
- B. LVEF recovers in about 60% of cases
- C. It is safe to continue treatment despite drop in LVEF to 40% range if there is no clinical heart failure
- D. HER2 treatment associated cardiotoxicity can present decades after exposure

#### **Pre-test Question #2**

#### Which of the following is true about ponatinib?

- A. Significant hypertension is uncommon
- B. Ponatinib has a safer CV side effect profile compared to imatinib
- C. Arterial vascular disease is a potential side effect
- D. Ponatinib increases QTc significantly

#### Learning objectives

- 1. Discuss how to manage LV dysfunction from anthracyclines and HER2 targeted therapies
- 2. Recognize cardiovascular side effects of TKI's
- 3. Highlight future directions in cardio-oncology

#### Cardiac effects of chemotherapy: Beyond LV function



#### ICOS 2022 definitions for cardiotoxicity

#### **Cardiac Dysfunction/HF**

Cardiac dysfunction or structural injury associated with cancer therapy, which can remain asymptomatic, or present as clinical HF, each defined ranging from mild to severe degree

(Table 1, Figure 2)

#### **Myocarditis**

Toxicity or immune-mediated inflammation of the myocardium, associated with various cancer therapies, especially immune checkpoint inhibitors, defined by major and minor diagnostic criteria

(Table 2)

#### Arrhythmias/ QT Prolongation

A QT interval >500 ms, measured by the Fridericia formula, is defined as prolonged. Supraventricular and ventricular arrhythmias are defined as per standard practice

(Table 5, Figure 3)

#### Definition of Key Cardiovascular Toxicities

#### **Hypertension**

Elevation in systolic and/or diastolic blood pressure after initiation of cancer therapy without any other contributing changes.

130/80 mmHg and 140/90 mmHg are defined as diagnostic and therapeutic thresholds according to co-morbidities

(Table 4)

#### **Vascular Toxicity**

Induction or aggravation of vascular disease caused by cancer therapy; vascular toxicity may be transient or sustained, symptomatic or asymptomatic, defined by standard criteria

(Table 3)



### Case study: Breast cancer

- JC: 35 y/o woman, no PMH
- Dx: Infiltrating lobular carcinoma of L breast, ER-/PR-, HER2+, no mets

#### What is her risk of cardiotoxicity?

- Lumpectomy, Radiation therapy, ddAC-T (doxorubicin, cyclophosphamide and paclitaxel)
- HER2+ → Starts trastuzumab 1 mo later
- Breast cancer in remission

### **Anthracycline cardiotoxicity**



### **Anthracyclines and timing**



Cardinale et al. Circulation. 2015;131:1981-1988

#### Anthracycline cardiotoxicity is reversible?



#### Timing of intervention matters

201 patients with LVEF < 45% due to anthracyclines Enalapril and carvedilol were added, followed LVEF q3 mo



Time between chemo and HF meds

**Earlier is Better!** 

**Early = Response = Survival!** 

### **Trastuzumab Cardiotoxicity**

| Selected Trials                    | Time interval between anthracycline and trastuzumab | Incidence of CHF<br>(%) | Incidence of LV dysfunction (%) | Reversibility |
|------------------------------------|-----------------------------------------------------|-------------------------|---------------------------------|---------------|
| Slamon et al.‡                     | Concurrent                                          | 16                      | 27                              | Yes           |
| NCCTG N9831;arm B                  | 105 days                                            | 2.8                     | 7.8                             | Yes           |
| NCCTG N9831;arm C                  | 21 days                                             | 3.3                     | 10.4                            | Yes           |
| BCIRG-006; Anthracycline arm       | 21 days                                             | 2.0                     | 18.6                            | Yes           |
| BCIRG-006;<br>Nonanthracycline arm | NA                                                  | 0.4                     | 9.4                             | Yes           |

Administration w/ anthracyclines increases risk

Increased delay between therapies decreases risk

**Toxicity is usually reversible** 

#### What about trastuzumab rechallenge?

38 patients with HER2/neu+ breast cancer All received anthracyclines



### Case study: Breast cancer

Echo shows LVEF of 40% (baseline 60%)
 GLS is now -13% (baseline -19%)



Could we have prevented this?

#### **Summary of Select Cardioprotection Studies**

| Study        | Year | Cohort and Exposure                                                         | Cardiac Intervention                                                             | Outcome Measures                                                                                          | Results                                                                                                                            |
|--------------|------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| OVERCOME     | 2013 | Hematologic<br>malignancies (AML or<br>auto-HSCT)                           | Enalapril and carvedilol vs.<br>placebo                                          | Change in LVEF on echo and cardiac MRI                                                                    | Enalapril and coreg prevented drop in LVEF; also lower incidence of death or HF                                                    |
| PRADA        | 2016 | Early stage breast cancer treated with anthracyclines +/- trastuzumab or RT | 2x2 factorial treatment with candesartan or metoprolol succinate vs. placebo     | 5% drop in LVEF by cardiac MRI                                                                            | Candesartan attenuated drop in LVEF (0.8% vs. 2.6%); no effect of metoprolol succ                                                  |
| MANTICORE    | 2017 | HER2-positive early breast cancer +/- anthracyclines                        | Perindopril vs. bisoprolol vs.<br>placebo                                        | Change in LVEDVi (primary)<br>and LVEF (secondary, LVEF ≥<br>10% drop to less than 53%)<br>by cardiac MRI | No difference in LVEDVi; bisoprolol (-1%) and perindopril (-3%) protected against change in LVEF vs. placebo (-5%)                 |
| CECCY        | 2018 | HER2-neg breast cancer exposed to anthracylines                             | Carvedilol vs. placebo                                                           | ≥ 10% drop in LVEF by echo                                                                                | No difference in LVEF or BNP between groups; carvedilol protected against troponin elevation and diastolic dysfunction             |
| USF (Guglin) | 2018 | Breast cancer exposed to trastuzumab +/- anthracyclines                     | Lisinopril vs. carvedilol vs.<br>placebo                                         | ≥ 10% drop in LVEF by echo                                                                                | No difference in trastuzumab alone; for those exposed to anthracyclines and trastuzumab, lisinopril and carvedilol were protective |
| ICOS-One     | 2018 | Mixed cohort with exposure to anthracyclines                                | Enalapril starting with anthracyclines vs. only starting with Troponin elevation | Troponin elevation                                                                                        | No difference between strategy of primary prevention vs. Troponin-triggered strategy                                               |

OVERCOME: Bosch X et al. JACC 2013; 61(23): 2355-62 PRADA: Gulati G et al. Eur Heart J 2016; 37(21): 1671-80 MANTICORE: Pituskin et al. JCO 2017; 35(8): 870-7

CECCY: Avila MS et al. JACC 2018; 71(20): 2281-90 USF: Guglin M. Presented at ACC 2018, NCT01009918 ICOS-One: Cardinale D et al. Eur J Cancer. 2018; 94: 126-37

#### Meta-analysis of NH blockade as cardioprotection

Patients With Cancer Undergoing Chemotherapy Cardiotoxicity, Subclinical Cardiac Dysfunction, and Heart Failure



#### Meta-analysis of NH blockade as cardioprotection



#### What about statins?

- Stage I-III breast CA or stage I-IV lymphoma
- Chemotherapy w/ anthracycline
- 279 randomized to atorvastatin
   40 mg vs placebo
- Followed for 24 months
- Primary endpoint change in LVEF on CMR



### Subgroup analyses

Risk ratios for greater than 5 percentage decline in LVEF over 24 months



### Meta-analysis of dexrazoxane in BC

**CENTRAL ILLUSTRATION** Dexrazoxane in Breast Cancer Patients Under Anthracycline-Based Chemotherapy



- Dexrazoxane reduced the risk of clinical heart failure (RR = 0.19 (95% CI, 0.09 to 0.40), p <0.001) and cardiac events (RR = 0.36 (95% CI, 0.27 to 0.49), p <0.001)</li>
- The rate of partial or complete oncological response, overall survival, and progression-free survival were not affected by dexrazoxane

Macedo AV et al. JACC: Cardio-oncology 2019 1(1)

#### Case study: JC

- Trastuzumab held; Started carvedilol and lisinopril
- 1 month later: LVEF 60% (GLS -18%)
- Completed Trastuzumab, LVEF stable

Breast Cancer Research and Treatment https://doi.org/10.1007/s10549-019-05191-2

#### **CLINICAL TRIAL**



Prospective evaluation of the cardiac safety of HER2-targeted therapies in patients with HER2-positive breast cancer and compromised heart function: the SAFE-HEaRt study

F. Lynce<sup>1</sup> · A. Barac<sup>1,2</sup> · X. Geng<sup>3</sup> · C. Dang<sup>4,5</sup> · A. F. Yu<sup>4,5</sup> · K. L. Smith<sup>6,7</sup> · C. Gallagher<sup>8</sup> · P. R. Pohlmann<sup>1</sup> · R. Nunes<sup>6,7</sup> · P. Herbolsheimer<sup>9</sup> · R. Warren<sup>1</sup> · M. B. Srichai<sup>2,10</sup> · M. Hofmeyer<sup>2</sup> · A. Cunningham<sup>11</sup> · P. Timothee<sup>11</sup> · F. M. Asch<sup>2,11</sup> · A. Shajahan-Haq<sup>1</sup> · M. T. Tan<sup>3</sup> · C. Isaacs<sup>1</sup> · S. M. Swain<sup>1</sup>

#### **ORIGINAL RESEARCH**

### Safety of Continuing Trastuzumab Despite Mild Cardiotoxicity





#### A Phase I Trial

Darryl P. Leong, MBBS, MPH, MBiostat, PhD, <sup>a,b,c</sup> Tammy Cosman, PhD, <sup>a</sup> Muhammad M. Alhussein, MD, <sup>a</sup> Nidhi Kumar Tyagi, MBChB, <sup>d</sup> Sarah Karampatos, MS, <sup>b</sup> Carly C. Barron, MD, MS, <sup>a</sup> Douglas Wright, MD, <sup>a</sup> Vikas Tandon, MD, <sup>a</sup> Patrick Magloire, MD, <sup>a</sup> Philip Joseph, MD, <sup>a,b</sup> David Conen, MD, MPH, <sup>a,b</sup> P.J. Devereaux, MD, PhD, <sup>a,b,c</sup> Peter M. Ellis, MBBS, MMED, PhD, <sup>d</sup> Som D. Mukherjee, MD, MS, <sup>d</sup> Sukhbinder Dhesy-Thind, MD, MS

### What about long term risk?





Reding KW, Cheng RK, et al. JACC: Cardio-oncology 2022 Mar. 4(1)

#### Kaiser Pathways – Incident CVRF



#### **Summary: anthracyclines +/- HER2**

- Anthracycline cardiotoxicity
  - -Dose dependent (risk at 200 mg/m2; stop at 550 mg/m2)
  - -Occurs mostly within 1 year, partially reversible
- HER2 targeted therapy cardiotoxicity
  - -Not dose related
  - -Always reversible; Rechallenge is well-tolerated
- Beta blockers and ACEi may be cardioprotective for primary prevention – but unclear <u>which</u> patients
- Think about long-term risk and surveillance for CV disease but also cardiometabolic disease (HTN, T2DM)

#### **Post-test Question #1**

## Which of the following is true about HER2 targeted therapy and LV dysfunction?

- A. Once LVEF <50%, need to permanently discontinue treatment
- B. LVEF recovers in about 60% of cases
- C. It is safe to continue treatment despite drop in LVEF to 40% range if there is no clinical heart failure
- D. HER2 treatment associated cardiotoxicity can present decades after exposure

#### Case 2: CML and BCR-ABL TKI

- Diagnosed at age 71 with CML without significant PMH
  - -Treated w/ imatinib -> stopped due to ocular symptoms
  - -Treated w/ dasatinib → pleural effusions
  - -Switched to <u>nilotinib</u>  $\rightarrow$  good response but LE claudication with stenosis of bilateral SFA and L PTA
  - Switched to bosutinib

- Ongoing hypertension, progressive aortic stenosis

### Considerations of oral targeted therapies

**Oral Antineoplastic Agent** 



**Baseline CV Risk Assessment** 



LV Dysfunction/Heart Failure



Careful H and P LVEF by 2D/3D Echo/cMRI



- Rule out other causes
- Consider ACE-I/ARB/BB for LV dysfunction or high risk patients

**CV** Adverse Event

**CV Monitoring** 

**CV Management** 





Very common: ≥10% incidence

• Uncommon: 0.1% to < 1% incidence

Common: 1% to <10% incidence

Rare: <0.1% incidence</p>



#### **Hypertension from VSP inhibitors**





\*Consider β-blockers if indication e.g. HF or CAD

### Recommended threshold for asymptomatic hypertension treatment in different clinical scenarios



### QTc prolongation on TKI therapy

FIGURE 2 Algorithm for QT-Interval Monitoring in Patients Receiving Oral Antineoplastic Agents



If baseline QT interval is prolonged, manual measurement and Fridericia correction should be completed. If QT increases by more than 60 ms from baseline to a level beyond 480 ms for females and 470 ms for males, QT should be corrected for conduction abnormalities/arrhythmias, electrolytes addressed, and concomitant QT-prolonging medications changed before proceeding with oral chemotherapy.

Rao VU et al. JACC 2021; 77(21)



#### Nilotinib has been associated with AS



#### Case 2: CML follow-up

- Progressive AS → TAVR
- HFpEF → diuretics
- Hypertension → ACEi, beta blocker
- Continue bosutinib, avoid nilotinib and ponatinib



#### **Summary: CV concerns with TKI for CML**

- Many TKI are multitargeted with on- and off-target risk for cardiotoxicity
- Wide spectrum of CV risk that varies by TKI; Even within a class, differences by specific drug
- Treat HTN with ACEi and CCB
- Be vigilant of other cardiovascular effects such as QT prolongation, HF, AF, vascular effects

#### **Post-test Question #2**

#### Which of the following is true about ponatinib?

- A. Significant hypertension is uncommon
- B. Ponatinib has a safer CV side effect profile compared to imatinib
- C. Arterial vascular disease is a potential side effect
- D. Ponatinib increases QTc significantly

#### Timeline for Key Clinical Developments Cardiology and Oncology Professional Society Statements on LV Dysfunction Clinical use ACCF/AHA ASE NCCN ESC ASCO Cardiotoxicity recognized LVEF monitoring in oncology practice **Anthracyclines** HER-2 Therapy **VEGF Inhibitors** Proteasome Inhibitors Immune Checkpoint Inhibitors 1960-70s 1990 2000 2010 2015 2017



"There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know we don't know."

- Donald Rumsfeld

#### Immunotherapy and cardiovascular risk







European Heart Journal - Cardiovascular Imaging (2022) **00**, 1–133 https://doi.org/10.1093/ehjci/jeac106

2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)

Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC)

#### **UW/SCCA Cardio-oncology Program**

Richard K. Cheng, MD (clinic)
 rkcheng@uw.edu



- Marta Alhama, MD (clinic)
   martaab@uw.edu
- Ruchi Kapoor, MD (clinic)
   ruchik@uw.edu









- Tracy Fowler, ARNP (clinic)
   twiege@uw.edu
- Madeline Scheer, RN (clinic) <u>scheerm@uw.edu</u>
- Jim Kirkpatrick, MD (imaging) <u>kirkpatj@uw.edu</u>













#### Opportunities to learn more cardio-oncology

 UW/SCCA/Fred Hutch/Seattle Children's Cardio-oncology Symposium, led by Dr. Eric Chow – Seattle, May 2023

American College of Cardiology Cardio-oncology Meeting –
 Washington D.C. + virtual option, <u>April 2023</u>



