Natural and Vaccine-Induced Immunity to COVID-19 in Rhesus Macaques

Dan H. Barouch, M.D., Ph.D.
Director, Center for Virology and Vaccine Research
Beth Israel Deaconess Medical Center
Professor of Medicine
Harvard Medical School
Ragon Institute of MGH, MIT, and Harvard

HVTN COVID-19 Vaccine Research in Animal Models Teleconference
May 26, 2020
Two Critical Questions for COVID-19 Vaccine Development

• Is there natural protective immunity? Will individuals who recover from COVID-19 be protected against re-exposure?

• Is there vaccine-induced immunity? What are the immune correlates of protection?
Animal Models for COVID-19

• **Small animal models**
 - ACE2 transgenic mice
 - Ferrets
 - Hamsters

• **Large animal models**
 - Rhesus macaques
 - Cynomolgus macaques
SARS-CoV-2 infection protects against rechallenge in rhesus macaques

Abhishek Chandrashekar1,*, Jinyan Liu1,*, Amanda J. Martinott1,*, Katherine McMahan1,*, Noe B. Mercado1,*, Lauren Peter1,*, Lisa H. Tostanoski1,*, Jingyou Yu1,*, Zoltan Maliga1, Michael Nekorchuk1,*, Kathleen Busman-Sahay1, Margaret Terry1, Linda M. Wrijli1, Sarah Ducat1, David R. Martinez2, Caroline Atyeo3,*, Stephanie Fischinger1, John S. Burke4, Matthew D. Slein1, Laurent Pessaint5, Alex Van Ry6, Jack Greenhouse7, Tammy Taylor8, Kelvin Blade8, Anthony Cook8, Brad Finneytrock9, Renita Brown9, Elyse Teow10, Jason Velasco10, Roland Zahn11, Frank Wegmann12, Peter Abblink12, Esther A. Bondzie13, Gabriel Dagotto13, Malida S. Gehre13, Xuan He14, Catherine Jacob-Dolan15, Nicole Kordana15, Zhendong Li15, Abhishek Chandrashekar15, David R. Martinez15, Carolin Loos16, Caroline Ayeo17, Stephanie Fischinger1, John S. Burke18, Matthew D. Slein18, Yuezhen Chen19, Adam Zukani19, Felip J. N. Lezis20, Meghan Travers20, Shaghayegh Habibi20, Laurent Pessaint5, Alex Van Ry6, Kelvin Blade8, Renita Brown9, Anthony Cook8, Brad Finneytrock9, Alan Dodson10, Elyse Teow10, Jason Velasco10, Roland Zahn11, Frank Wegmann12, Esther A. Bondzie13, Gabriel Dagotto13, Malida S. Gehre13, Xuan He14, Catherine Jacob-Dolan15, Marinela Kirolova21, Nicole Kordana15, Zijin Liu21, Liori F. Maxfield21, Felix Nampanya21, Ramya Nityanandam21, John D. Ventura21, Hualna War21, Yongtai Cai21, Bing Chen21, Aaron G. Schmidt21, Duane R. Wesemann21, Ralph S. Barie21, Galil Alter21, Hanne Andersen21, Mark G. Lewis21, Dan H. Barouch1,*,†

1Center for Viral and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02135, USA. 2Tuffs University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA. 3Harvard Medical School, Boston, MA 02115, USA. 4Oregon Health & Science University, Beaverton, OR 97006, USA. 5University of North Carolina, Chapel Hill, NC 27599, USA. 6Harvard Institute of Mihi, MT, and Harvard, Cambridge, MA 02139, USA. 7Biopool, Rockville, MD 20852, USA. 8Janssen Vaccines & Prevention BV, Leiden, Netherlands. 9Massachusetts General Hospital, Boston, MA 02115, USA. 10Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA. 11Scripps Research Institute, La Jolla, CA 92037, USA. 12Iowa State University, Ames, IA 50011, USA. 13University of California, San Francisco, CA 94158, USA. 14University of Vermont, Burlington, VT 05405, USA. 15Center for Vaccine Research, The University of California, San Francisco, CA 94143, USA. 16Stanford University, Stanford, CA 94305, USA. 17Yale University School of Medicine, New Haven, CT 06520, USA. 18University of Pennsylvania, Philadelphia, PA 19104, USA. 19University of California, Los Angeles, Los Angeles, CA 90024, USA. 20University of California, San Diego, La Jolla, CA 92030, USA. 21University of Iowa, Iowa City, IA 52242, USA. 22Janssen Vaccines & Prevention BV, Leiden, Netherlands. 23Children’s Hospital, Boston, MA 02115, USA. 24Massachusetts General Hospital, Boston, MA 02115, USA.

*These authors contributed equally to this work.
†Corresponding author. Email: dbarouch@bidmc.harvard.edu

DNA vaccine protection against SARS-CoV-2 in rhesus macaques

Jingyou Yu1,*, Lisa H. Tostanoski1,*, Noe B. Mercado1,*, Katherine McMahan1,*, Shant H. Mahrokhian1,*, Joseph P. Nikolaidis1,*, Jingyou Liu1,*, Zhendong Li15, Abhishek Chandrashekar15, David R. Martinez15, Carolin Loos16, Caroline Ayeo17, Stephanie Fischinger1, John S. Burke18, Matthew D. Slein18, Yuezhen Chen19, Adam Zukani19, Felip J. N. Lezis20, Meghan Travers20, Shaghayegh Habibi20, Laurent Pessaint5, Alex Van Ry6, Kelvin Blade8, Renita Brown9, Anthony Cook8, Brad Finneytrock9, Alan Dodson10, Elyse Teow10, Jason Velasco10, Roland Zahn11, Frank Wegmann12, Esther A. Bondzie13, Gabriel Dagotto13, Malida S. Gehre13, Xuan He14, Catherine Jacob-Dolan15, Marinela Kirolova21, Nicole Kordana15, Zijin Liu21, Liori F. Maxfield21, Felix Nampanya21, Ramya Nityanandam21, John D. Ventura21, Hualna War21, Yongtai Cai21, Bing Chen21, Aaron G. Schmidt21, Duane R. Wesemann21, Ralph S. Barie21, Galil Alter21, Hanne Andersen21, Mark G. Lewis21, Dan H. Barouch1,*,†

1Center for Viral and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02135, USA. 2University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 3Harvard Institute of Mihi, MT, and Harvard, Cambridge, MA 02139, USA. 4Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA. 5Biopool, Rockville, MD 20852, USA. 6Janssen Vaccines & Prevention BV, Leiden, Netherlands. 7Children’s Hospital, Boston, MA 02115, USA. 8Massachusetts General Hospital, Boston, MA 02115, USA. 9University of California, Los Angeles, Los Angeles, CA 90024, USA.

*These authors contributed equally to this work.
†Corresponding author. Email: dbarouch@bidmc.harvard.edu
SARS-CoV-2 Infection Study in Rhesus Macaques

• Animals: Indian-origin rhesus macaques (N=13)
 • 6-12 years old, SPF, mixed male/female

• Dose titration (N=9; 1 ml IN + 1 ml IT)
 • Group 1: 1.1×10^6 PFU (N=3)
 • Group 2: 1.1×10^5 PFU (N=3)
 • Group 3: 1.1×10^4 PFU (N=3)

• Necropsy for histopathology on day 2 and day 4 (N=4)
Viral RNA in BAL Following Challenge

Days Following Challenge

Group 1

Group 2

Group 3
Viral RNA in Nasal Swabs Following Challenge

Days Following Challenge
Subgenomic mRNA in Nasal Swabs Following Challenge

Days Following Challenge

Group 1

Group 2

Group 3
Viral RNA in Plasma Following Challenge

Days Following Challenge
S-Specific ELISA Responses Following Challenge

Days Following Challenge

Group 1

Group 2

Group 3

ELISA Titer

Days Following Challenge
Pseudovirus Neutralizing Antibody Responses Following Challenge

Days Following Challenge

Group 1

Group 2

Group 3
Live Virus Neutralizing Antibody Responses Following Challenge

Group 1

Group 2

Group 3

Days Following Challenge

David Martinez, Ralph Baric
Antibody Subclasses and Function Following Challenge
ELISPOT Responses Following Challenge

Days Following Challenge

Group 1

Group 2

Group 3
ICS Responses Following Challenge

Days Following Challenge

Group 1

% IFN+ / CD4+ CD3+ T Cells

% IFN+ / CD8+ CD3+ T Cells

Group 2

% IFN+ / CD4+ CD3+ T Cells

% IFN+ / CD8+ CD3+ T Cells

Group 3

% IFN+ / CD4+ CD3+ T Cells

% IFN+ / CD8+ CD3+ T Cells
Tissue Viral RNA Following Necropsy

Day 2

Day 4

Log RNA Copies / g

Nares / Pharynx, Trachea, Lung, Trach LN, Distal LN, Spleen, Tonsill, GI, Liver, Kidney
Extensive Lung Inflammation by IHC

SARS CoV2 RNA	MPO	CD4-CD68-CD163	CD8	MX1
A | B | C | D | E

SARS CoV2

Uninfected

F | G | H | I | J

Jake Estes
Extensive Lung Inflammation by IHC

A

Lung Alveoli PMN Infiltration (PMNs/mm²)

P = 0.0296

B

% Area Total Lung Mx1+

P = 0.0286
SARS-CoV-2 Re-Challenge Study

• Do rhesus macaques that have recovered from SARS-CoV-2 infection have immunity against re-challenge?

• 9 animals in original infection study plus 3 naïve positive control animals re-challenged with SARS-CoV-2 on day 35

• Same dose as in original infection study (1 ml IN + 1 ml IT)
 • Group 1: 1.1×10^6 PFU (N=3)
 • Group 2: 1.1×10^5 PFU (N=3)
 • Group 3: 1.1×10^4 PFU (N=3)
Viral RNA in BAL Following Re-Challenge

Days Following Re-Challenge

Group 1

Group 2

Group 3

Naive
Viral RNA in Nasal Swabs Following Re-Challenge

Days Following Re-Challenge

Group 1

Group 2

Group 3

Naive
Subgenomic mRNA in Nasal Swabs Following Re-Challenge

Days Following Re-Challenge
Days Following Challenge or Re-Challenge

Primary Challenge

Re-Challenge

Log sgmRNA Copies / Swab

Days Following Challenge or Re-Challenge

P=0.0003

Peak Log sgmRNA Copies / Swab

Primary Re-challenge
Anamnestic Immune Responses Following Re-Challenge

Days Following Re-Challenge

- Log ELISA Titer: $P=0.0034$
- Log Pseudovirus NAb Titer: $P=0.0003$
- Log Virus NAb Titer: $P=0.0003$
- Log SFC / 10^6 PBMC: $P=0.1837$
SARS-CoV-2 Re-Challenge Study

- Rhesus macaques infected with SARS-CoV-2 show high amounts of virus in the upper and lower respiratory tract and pathologic features of viral pneumonia.

- Recapitulates key features of SARS-CoV-2 infection in humans, but not a model of severe COVID-19 disease.

- SARS-CoV-2 infection induces robust humoral and cellular immunity and dramatically protects against re-challenge, demonstrating natural protective immunity.

- Protection probably not sterilizing but instead likely mediated by rapid immunologic control.
SARS-CoV-2 DNA Vaccine Study

• Goal is to assess immunogenicity and protective efficacy of prototype vaccines against SARS-CoV-2 in rhesus macaques and to define immune correlates of protection

• To accomplish this, we evaluated prototype DNA vaccines expressing 6 variants of the SARS-CoV-2 Spike protein

• Aim is to advance our understanding of vaccine immunity and is not a test of a vaccine product in clinical development
Design of Prototype DNA Vaccines
Expression from Prototype DNA Vaccines

Lysate

<table>
<thead>
<tr>
<th>S</th>
<th>S.dCT</th>
<th>S.dTM</th>
<th>S.dTM.PP</th>
</tr>
</thead>
</table>

Supernatant

<table>
<thead>
<tr>
<th>S</th>
<th>S.dCT</th>
<th>S.dTM</th>
<th>S.dTM.PP</th>
</tr>
</thead>
</table>

Lysate

<table>
<thead>
<tr>
<th>S1</th>
<th>RBD</th>
</tr>
</thead>
</table>
Study Design

• 35 rhesus macaques, ages 6-12, mixed gender

• DNA vaccines (N=25)
 • N=4-5 for each vaccine (S, S.dCT, S.dTM, RBD, S1, S.dTM.PP)

• Sham controls (N=10)

• Dose: 5 mg, IM
• Schedule: week 0, 3
• Challenge: week 6, 1.2x10^8 vp (1.1x10^4 pfu) SARS-CoV-2
ELISA Responses

Week 0

Week 5
Pseudovirus NAb Responses
Live Virus NAb Responses

Week 0

Week 5

Virus NAb Titer

Sham S S.dCT S.dTM Sf RBD S.dTM.PP

Sham S S.dCT S.dTM Sf RBD S.dTM.PP

David Martinez, Ralph Baric
Pseudovirus and Live Virus NAb Titer Correlations

Log Virus NAb Titer

Log Pseudovirus NAb Titer

P<0.0001
R=0.8052
Comparison of NAb Titers in Vaccinated NHPs, Convalescent NHPs, Convalescent Humans
ELISPOT Responses

Week 0

Week 5

SFC / 10^6 PBMC

Sham S S_dCT S_dTM S_1 RBD S_dTM_PP

Sham S S_dCT S_dTM S_1 RBD S_dTM_PP
IFN+ CD4+ and CD8+ T Cell Responses
IL-4+ CD4+ and CD8+ T Cell Responses
Viral Loads (sgmRNA) Following Challenge

BAL

- **Sham**
- N=10

Nasal Swab

- **Sham**
- N=10

Days Following Challenge

Log sgmRNA Copies

0 2 4 6 8 10 12 14
Days Following Challenge

Log sgmRNA Copies / Swab

Nasal Swab

S

S.dCT

S.dTM

N=4

N=4

N=3

S1

RBD

S.dTM.PP

N=4

N=4

N=5

Days Following Challenge
Viral Loads (sgmRNA) Following Challenge

BAL Nasal Swab

- **P=0.03**

Nasal Swab

- **P=0.01**
Pseudovirus NAb Titers Inversely Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs

BAL

\[P < 0.0001 \]
\[R = -0.6877 \]

Nasal Swab

\[P = 0.0199 \]
\[R = -0.4162 \]
Live Virus NAb Titers Inversely Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs

BAL

P<0.0001
R=-0.7702

Nasal Swab

P=0.1006
R=-0.3360
NAAb Titers Represent the Principal Correlate of Protection But ADCD Responses Also Contribute
NAb and ADCD Responses Differentiate Animals with Complete Protection vs Partial Protection

P=0.0004

P=0.0001

P=0.0010

P=0.0005
Anamnestic NAb Responses Suggest Rapid Immunologic Control Rather than Sterilizing Immunity
Anamnestic ELISPOT Responses Suggest Rapid Immunologic Control Rather than Sterilizing Immunity
SARS-CoV-2 DNA Vaccine Study

- Prototype DNA vaccines expressing six S variants induced humoral and cellular immune responses in rhesus macaques; full-length S immunogen provided optimal protection

- 8 of 25 animals showed no virus in BAL or nasal swabs following SARS-CoV-2 challenge; remainder showed reduced viral loads

- Vaccine-elicited NAb titers (by both pseudovirus and live virus neutralization assays) correlated with protective efficacy

- Protection probably not sterilizing but instead likely to be mediated by rapid immunologic control
Conclusions

• These studies demonstrate natural protective immunity and vaccine-induced immunity to SARS-CoV-2 in macaques

• Our data suggest that NAb titers may be a useful biomarker and correlate of protection for vaccines

• These are proof-of-concept studies in animals and any conclusions for humans must await rigorous clinical studies
Acknowledgements (Re-Challenge Study)

<table>
<thead>
<tr>
<th>Beth Israel Deaconess, Harvard Medical School</th>
<th>Janssen, J&J</th>
<th>Cornell University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abishek Chandrashekar</td>
<td>Roland Zahn</td>
<td>Andrew Miller</td>
</tr>
<tr>
<td>Jinyan Liu</td>
<td>Frank Wegmann</td>
<td></td>
</tr>
<tr>
<td>Amanda J. Martinot</td>
<td>Children’s Hospital</td>
<td>Laurent Pessaint</td>
</tr>
<tr>
<td>Katherine McMahan</td>
<td>Bing Chen</td>
<td></td>
</tr>
<tr>
<td>Noe Mercado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauren Peter</td>
<td>Ragon Institute</td>
<td>Alex Van Ry</td>
</tr>
<tr>
<td>Lisa Tostanoski</td>
<td>Caroline Atyeo</td>
<td></td>
</tr>
<tr>
<td>Jingyou Yu</td>
<td>Stephanie Fischinger</td>
<td>Jack Greenhouse</td>
</tr>
<tr>
<td>Peter Abbink</td>
<td>John S. Burke</td>
<td></td>
</tr>
<tr>
<td>Esther Bondzie</td>
<td>Matthew D. Stein</td>
<td>Tammy Taylor</td>
</tr>
<tr>
<td>Gabriel Dagotto</td>
<td>Galit Alter</td>
<td></td>
</tr>
<tr>
<td>Makda S. Gebre</td>
<td>Aaron Schmidt</td>
<td></td>
</tr>
<tr>
<td>Xuan He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catherine Jacob-Dolan</td>
<td>Tufts University</td>
<td>Anthony Cook</td>
</tr>
<tr>
<td>Nicole Kordana</td>
<td>Linda M. Wrijil</td>
<td>Brad Finneyfrock</td>
</tr>
<tr>
<td>Zhenfeng Li</td>
<td>Sarah Ducat</td>
<td></td>
</tr>
<tr>
<td>Michelle Lifton</td>
<td>Amanda Martinot</td>
<td></td>
</tr>
<tr>
<td>Shant Mahrokhian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lori Maxfield</td>
<td>OHSU</td>
<td></td>
</tr>
<tr>
<td>Ramya Nityanandam</td>
<td>Michael Nekorchuk</td>
<td></td>
</tr>
<tr>
<td>Joseph Nkolola</td>
<td>Kathleen Busman-Sahay</td>
<td>David R. Martinez</td>
</tr>
</tbody>
</table>

University of North Carolina

Michael Nekorchuk	Hanne Anderson	Ralph Baric
Kathleen Busman-Sahay		
Margaret Terry		
Jake Estes		
Acknowledgements (Vaccine Study)

<table>
<thead>
<tr>
<th>Beth Israel Deaconess, Harvard Medical School</th>
<th>Children’s Hospital</th>
<th>Janssen, J&J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jingyou Yu</td>
<td>Yongfei Cai</td>
<td>Roland Zahn</td>
</tr>
<tr>
<td>Lisa Tostanoski</td>
<td>Bing Chen</td>
<td>Frank Wegmann</td>
</tr>
<tr>
<td>Lauren Peter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noe Mercado</td>
<td>Ragon Institute</td>
<td>Bioqual</td>
</tr>
<tr>
<td>Katherine McMahan</td>
<td>Carolin Loos</td>
<td>Laurent Pessaint</td>
</tr>
<tr>
<td>Shant Mahrokhian</td>
<td>Caroline Atyeo</td>
<td>Alex Van Ry</td>
</tr>
<tr>
<td>Joseph Nkolola</td>
<td>Stephanie Fischinger</td>
<td>Kelvin Blade</td>
</tr>
<tr>
<td>Jinyan Liu</td>
<td>John S. Burke</td>
<td>Renita Brown</td>
</tr>
<tr>
<td>Zhenfeng Li</td>
<td>Matthew D. Stein</td>
<td>Anthony Cook</td>
</tr>
<tr>
<td>Abishek Chandrashekar</td>
<td>Galit Alter</td>
<td>Brad Finneyfrock</td>
</tr>
<tr>
<td>Esther Bondzie</td>
<td>Aaron Schmidt</td>
<td>Alan Dodson</td>
</tr>
<tr>
<td>Gabriel Dagotto</td>
<td></td>
<td>Elyse Teow</td>
</tr>
<tr>
<td>Makda S. Gebre</td>
<td></td>
<td>Jason Velasco</td>
</tr>
<tr>
<td>Xuan He</td>
<td></td>
<td>Hanne Anderson</td>
</tr>
<tr>
<td>Catherine Jacob-Dolan</td>
<td>Brigham & Womens,</td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>Marinela Kirilova</td>
<td>Harvard Medical School</td>
<td></td>
</tr>
<tr>
<td>Nicole Kordana</td>
<td>Yuezhou Chen</td>
<td>David R. Martinez</td>
</tr>
<tr>
<td>Zijin Lin</td>
<td>Adam Zuiani</td>
<td>Ralph Baric</td>
</tr>
<tr>
<td>Lori Maxfield</td>
<td>Felipe Lelis</td>
<td></td>
</tr>
<tr>
<td>Felix Nampanya</td>
<td>Meghan Travers</td>
<td></td>
</tr>
<tr>
<td>Ramya Nityanandam</td>
<td>Shaghayegh Habibi</td>
<td></td>
</tr>
<tr>
<td>John Ventura</td>
<td>Duane Wesemann</td>
<td></td>
</tr>
<tr>
<td>Huahua Wan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Viral RNA Following Challenge

Days Following Challenge

Log Viral RNA Copies

BAL
Sham

Nasal Swab
Sham
Days Following Challenge

[Graphs showing Log Viral RNA Copies/ml for different samples: S, S.dCT, S.dTM, S1, RBD, S.dTM.PP]
Viral RNA Following Challenge

BAL

- **P=0.02**

Nasal Swab

- **P=0.04**

Nasal Swab

- **P=0.04**
ELISA Titers Inversely Weakly Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs

- **BAL**
 - $P=0.0041$
 - $R=-0.4733$

- **Nasal Swab**
 - $P=0.2712$
 - $R=-0.2039$
ELISPOT Responses Do Not Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs

For BAL:
- Log sgmRNA Copies/ml vs Log ELISPOT SFC / 10^6 PBMC
- P=0.9258
- R=0.0196

For Nasal Swab:
- Log sgmRNA Copies/Swab vs Log ELISPOT SFC / 10^6 PBMC
- P=0.6037
- R=-0.1025
CD4 ICS Responses Do Not Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs

BAL

P=0.4829
R=-0.1383

Nasal Swab

P=0.8855
R=0.0303
CD8 ICS Responses Do Not Correlate with Peak sgmRNA Titers in BAL and Nasal Swabs
Anamnestic ELISA Responses Suggest Rapid Immunologic Control Rather than Sterilizing Immunity
Anamnestic NAb Responses Suggest Rapid Immunologic Control Rather than Sterilizing Immunity