Biologic Basis of Breast Cancer Treatment

Julie R. Gralow, M.D.
Director, Breast Medical Oncology
Jill Bennett Endowed Professor of Breast Cancer
Professor, Global Health
University of Washington School of Medicine
Fred Hutchinson Cancer Research Center
Seattle Cancer Care Alliance
History of Cancer Treatment
From George Sledge’s ASCO 2011 Presidential Address

- 19th century: Loco-regional era
- Late 1940s-50s: Developed non-specific systemic approaches
- Past decade: Targeted therapies exploded
- Just entering a 4th era: Genomics
Genomic Classification: Many Subtypes of Breast Cancer!

Genes and Cancer

Red dots: Genes “turned up” in cancer cells compared to normal cells

All cancers are caused by genetic changes

Individual genes

Individual tumors

Genomic Profiling “Heat Map”
Genomic Classification: Many Subtypes of Breast Cancer!

Subtypes vary with respect to:
- Likelihood of recurrence
- Sites of metastases
- Response to treatment
- Frequency of subtypes varies across populations – additional subtypes likely exist
Breast Cancer Biology: Not all Breast Cancers are the Same!!

Estrogen Receptor (ER) +
75% of Breast Cancer

HER-2 +
20-25% of Breast Cancer

Tumor ER and HER2 status are CRITICAL in selecting therapy in both early stage and metastatic breast cancer!
Estrogen Receptor Positive Breast Cancer is a Spectrum in Itself: Luminal A and Luminal B Subtypes
Breast Cancer:
Luminal A and B Subtypes

• Express ER, PR, and genes associated with ER activation

• Luminal A (40 percent of all breast cancers)
 – High expression of ER-related genes, low expression of HER2 cluster genes and proliferation-related genes
 – Best prognosis of all breast cancer subtypes

• Luminal B (20 percent)
 – Relatively lower (although still present) expression of ER-related genes, variable expression of HER2 cluster, higher expression of proliferation cluster
 – Worse prognosis than luminal A
Estrogen Receptor as a Target for Therapy

Aromatase inhibitors, ovarian suppression

SERMS, SERDS

Cell Growth and Division

Estrogen

Endocrine therapy is effective only in ER-positive breast cancer

ER/PR staining: CRITICAL IN SELECTING THERAPY!
Breast Cancer: HER-2 Subtype

- 10 to 15 percent of breast cancers
- High expression of HER-2 and proliferation gene clusters, low expression of luminal cluster
 - Typically ER/PR negative, HER-2 positive
 - This subtype comprises only about half of clinically HER-2-positive breast cancer (the rest is luminal B)
- Before HER2-targeted therapy, this subtype carried a poor prognosis.
 - Markedly affected by advances in HER2-directed therapy
HER2 as a Target for Therapy

- HER-2
- Anti-HER-2 Antibody
- Pertuzumab
- Trastuzumab (Herceptin)
- Lapatinib (Tykerb)
- Dual HER-1/HER-2 Tyrosine Kinase Inhibitor
- Ado-trastuzumab emtansine
- Antibody-Drug Conjugate
- T-DM1

HER2 therapy effective only in HER2-overexpressing breast cancer
HER2 staining: CRITICAL IN SELECTING THERAPY!
Breast Cancer: Basal Subtype

- 15 to 20 percent of breast cancers
- Low expression of luminal and HER2 gene clusters
 - Typically ER-, PR-, and HER-2-negative ("triple negative")
- High expression of proliferation cluster genes, virtually always high grade, widespread genomic instability
 - High expression of EGFR and unique basal cluster genes (basal epithelial cytokeratins 5, 14, and 17)
- Common in BRCA1 mutation carriers (over 80%)
- Overrepresented in premenopausal and African women
- Poor prognosis
- Sensitive to chemotherapy
- Associated with DNA repair defects - PARP1 commonly increased
6 subtypes of TNBC identified by gene expression array
Targeting the Cancer Environment

In Addition to Targeting the Cancer Cell, We Can Also Target the Cancer Environment

- Cancer cell
- Immune cell
- Blood vessels
- Fibroblast
- Osteoclast
Biologic Basis of Breast Cancer Treatment: Opportunities and Challenges in Targeting Cancer Therapy

• Identifying the target
 – patient and tumor selection

• Understanding the target
 – role in tumor
 – networks and interactions
 – role in normal tissues

• Monitoring the target
 – does an agent actually target the intended pathway and does it result in clinical benefit?
Merging the Targeted Therapy Era with the Genomic Era of Cancer Treatment: Targets and Drugs

- EGFR Inhibitors
- HER-2 Inhibitors
- IGF-R Inhibitors
- MUC-1 Antibodies
- Metastasis Inhibitors
- Anti-Angiogenesis
- Death Receptors
- Raf Inhibitors
- HIF Inhibitors
- MEK Inhibitors
- HSP90 Inhibitors
- MEK Inhibitors
- Proteosome Inhibitors
- Tubulin-interacting Agents
- mTOR Inhibitors
- Src Inhibitors
- Cell Cycle Inhibitors
- Farnesyl Transferase Inhibitors
- Aurora Kinase Inhibitors
- Mdm2 Inhibitors
- Pro-apoptotic Drugs
- Kinesins
- HDAC Inhibitors
Ongoing NCI MATCH (Molecular Analysis for Therapy Choice) Clinical Trial

Genomic Profiling of Tumor

↓

Actionable mutation detected

↓

Study Agent 1

Continue until progression

Progressive disease

Check for additional actionable mutations

Study Agent 2

• Eligibility:
 – Metastatic solid tumors and lymphomas that have progressed on ≥ 1 line of therapy
• Access to many drugs in development: currently > 40 drugs pledged
Biologic Basis of Breast Cancer Treatment: The Future

- Cancer care is set to change dramatically in the next 20 years
- Advances in technology and a deeper understanding of cancer biology will transform cancer care
- Continued investments in cancer research required to translate scientific breakthroughs into new treatments