Technology Overview

Currently, there are no reliable vaccines physicians can use to treat infectious diseases that require responses by T cells. For example, even though biotechnology continues to reveal antigens that T lymphocytes can target in vitro, clinical trials for corresponding vaccines often fail because many immunized patients do not produce enough cells that express the required receptors. To address this problem, Dr. Matthias Stephan has developed nanoreagents that can genetically program T cells to bind selected vaccine epitopes. These can be injected in combination with a vaccine antigen to generate defined T-cell receptor mediated immunity in any individual independent of the pre-existing TCR repertoire. Nanoparticles are both easy to produce in a stable form and easy to administer, so this strategy will provide an inexpensive way for physicians to generate pathogen-specific immunity in a variety of clinical settings.

Application

- Vaccines

Advantages

- Currently no method for programmed T cell immunity
- Cost-effective

Market Overview

This technology can be adapted for use with many vaccine types. The global vaccines market is expected to reach $48 Billion by 2021 driven by the high prevalence of disease.

Investigator Overview

Matthias Stephan, MD, PhD

BUSINESS OPPORTUNITY

- Exclusive License
- Sponsored Research

TECHNOLOGY TYPE

Therapeutic

STAGE OF DEVELOPMENT

Pre-clinical in vitro

PATENT INFORMATION

Patent pending

LEARN MORE

partnering@fredhutch.org
206-667-6349

GENETIC PROGRAMMING OF T CELLS TO PREVENT VACCINE FAILURES

Synthetic Nanoparticles for Increased Vaccine Effectiveness

Brief Description of Technology

Nanoparticles to establish immunity against defined pathogens by introducing exogenous antigen-specific TCRs into T cells