Novel Technology for Detection and Diagnosis

Leah Eshraghi, MPH
Dr. Susan Love Research Foundation (USA)

Ari Brooks, MD
Penn Medicine (USA)
Low-Cost Automated Ultrasound for Triage of Palpable Breast Lumps in LMICs

PI: Susan Love MD MBA
Clinical Professor of Surgery
David Geffen School of Medicine at UCLA
Chief Visionary Officer
Dr. Susan Love Research Foundation

Wendie Berg MD PhD FACR
Professor of Radiology
University of Pittsburgh School of Medicine
Magee-Women’s Hospital

Christine Podilchuk PhD
Chief Executive Officer
AI Strategy
In developing countries breast cancer is more common in young women

- Most breast cancer in women under 50 presents as a palpable mass
- Mammographic screening less effective and available
 - Breast tissue more dense obscuring lesions
 - Biology of breast cancer may well be different with more women presenting with triple negative and Her 2 positive disease
- Most palpable breast masses in women are benign
 - 80% are benign
 - Current medical practice requires biopsy or cyst aspiration to confirm benignity monopolizing scarce medical resources
The Solution: Low-Cost Portable Ultrasound with CAD that can be used by non-radiologist healthcare workers to triage palpable breast lesions

An easy to use portable ultrasound system with CAD that will indicate which palpable lumps are

- **Clearly benign**: reassure
- **Clearly malignant**: biopsy
- **Probably benign**: follow up in six months

Stressed healthcare delivery systems could focus their resources on women most likely to benefit from their efforts.
Features and Benefits

- Ultrasound is non-ionizing, non-invasive, less expensive, and more comfortable than mammograms
- *Triage-CAD software is device-agnostic: works with any ultrasound imaging device*
 - User friendly and intuitive interface that requires very little training or experience by local caregivers.
 - Software to assist in diagnosis can be run locally on a low-cost system in environments where there is limited access to high bandwidth, reliable networks for data transfer
 - Computer-aided diagnosis with triage recommendation
- Novel AI algorithms based on deep learning platform
- Triage-software can run as a stand-alone system on DICOM files or JPEG images
Low-Cost Portable US with Triage-CAD

• Portable, low-cost device that is suitable for LMIC environments (all study devices donated by GE)
 • Study device for Phase I validation studies at County USC and Harbor-UCLA Medical Center – **GE Logiq e™**
 • Study device for pilot study with minimally trained operators in Guadalajara: **GE Vscan Dual Probe™**
 • Study device for Phase II studies in Guadalajara: **GE Vscan Extend™**

• Goal
 • Portable ultrasound/phone with CAD app that can be applied to image
Phase I Validation Study

• Validation study at USC Norris Cancer Center and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center to assess performance of the triage software compared to standard-of-care and biopsy-confirmed cancers and false positives

• Women 61 years of age or younger with a palpable mass were studied on the study machine as well as the standard of care machine.

• Lesions assessed as BI-RADS 2 by radiologists were designated as benign while any lesions assessed as BI-RADS 4a or higher were sent for biopsy

• Triage software was compared to the performance by radiologists using conventional standard of care
Phase I Validation Study

• Original milestones for study:
 • Achieve a sensitivity of 85%
 • Reduce the number of benign lesions going to biopsy by 40%

• Images collected during validation study
 • 152 lesions
 • 22 biopsy-proven cancers
 • 130 benign lesions
 • 63 benign lesions categorized as BI-RADS 4a or higher by a radiologist and sent for biopsy

• Validation study
 • Showed an actual sensitivity of 100%
 • Reduced the number of benign lesions going to biopsy by 69%
Phase I Validation Study – Image Comparison

Image comparison – Siemens S2000 vs GE Logiq e:
Images were collected with the Study Machine (GE Logiq e) and the conventional machine (USC only; Siemens S2000)
Palpable Breast Lump Triage by Minimally Trained Operators in Mexico Using Computer-Assisted Diagnosis and Low-Cost Ultrasound

- Recruited and trained three nonradiologist health care workers in Jalisco, Mexico for pilot study to determine whether they could use the portable ultrasound (GE Vscan Dual Probe) to acquire images of palpable breast lumps of adequate quality for accurate computer analysis
- Images from 32 women with 32 breast masses were then analyzed with the triage-CADx system, generating an output of benign or suspicious (biopsy recommended)
- Triage-CADx outputs were compared with radiologist readings
CADx-Triage Testing on Data from Pilot

GE Vscan
- Is image quality adequate for CAD-Triage Analysis SW? **yes**
- Are images collected by trainees compared to radiologists adequate for CAD-Triage Image Analysis? **yes**

The BI-RADS scores of the cases break down as follows:
- 13 BI-RADS 2
- 5 BI-RADS 3
- 11 BI-RADS 4A
- 1 BI-RADS 4B
- 1 BI-RADS 5
- 1 confirmed cancer

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rad-scanned</th>
<th>Trainee-scanned</th>
<th>Rad assessment</th>
<th>Ground truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>28</td>
<td>Known cancer</td>
<td>Cancer</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>27</td>
<td>5</td>
<td>Cancer</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>19</td>
<td>4B</td>
<td>Cancer</td>
</tr>
</tbody>
</table>

- CAD-Triage was used to rank the cases by suspicion of malignancy. The table shows the top 3 most suspicious lesions, and their corresponding BI-RADS scores. All three cases are cancers. All other lesions are benign.
Phase II Data Collection and Validation Studies

<table>
<thead>
<tr>
<th>Phase</th>
<th>Data Collection Validation Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>Non-blinded</td>
</tr>
<tr>
<td>Study Duration</td>
<td>1 year</td>
</tr>
<tr>
<td>Study Centers</td>
<td>Hospital Valentin Gomez Farias (ISSSTE) Zapopan, Jalisco, Mexico Instituto Mexicano del Seguro Social (IMSS) Tijuana, Mexico</td>
</tr>
</tbody>
</table>
| **Principal Investigator** | Dr. Susan Love
Local PI: Dra Ana Lila Lopez Aldrete, Dr Jorge F. Tokunaga Fujigaki |
| **Objectives** | Objective I: Determine sensitivity and specificity of CAD Ultrasound System in use in a LMIC environment with a low-cost portable device
Objective II: Determine the acceptability and feasibility of ultrasound for breast cancer triage in LMIC environment, with expert radiologist oversight |
| **Number Subjects** | Phase 1: 500 (data collected to train/test Triage System)
Phase 2: 600 (Validation Study – measure Triage performance in clinical setting) |
| **Diagnosis and Inclusion Criteria** | Women with a palpable breast lump
Ages: 18 years of age and older |
| **Study Product** | Triage System with low-cost portable ultrasound imaging device |
Goal

• Readily available portable ultrasounds in the women’s clinics, to be used by first level health care providers in LMIC countries with potential to migrate to primary care providers in US

• Develop a CAD app that can be incorporated into either a smartphone-based handheld ultrasound device or a phone/tablet paired with a portable ultrasound

• Test app in appropriate clinical setting

• Identify hardware partner(s)

Potential: Immediate treatment of palpable benign lumps by needle aspiration or cryotherapy
Needle biopsy of suspicious lumps for molecular analysis using methylation followed by cryotherapy
Acknowledgements

• Collaborators
 • Wendie Berg, MD, PhD, FACR, University of Pittsburgh School of Medicine, Magee-Women’s Hospital
 • Christine Podilchuk, PhD, CEO, AI Strategy
 • Richard Mammone, PhD, Rutgers University, AI Strategy
 • AI Strategy Team
 • Ana Lilia Lopez Aldrete, MD

• Dr. Susan Love Research Foundation
 • Leah Eshraghi, MPH, Senior Director of Clinical Research
 • Teresa Soler, MSc, Clinical Research Manager
 • All the women who participated in our studies
 • GE
 • National Institutes of Health (Award numbers 1UH2EB019889 and UH3CA189966)
 • Private donor to the Dr. Susan Love Research Foundation
Global Summit on International
Breast Health and Cancer Control:
Improving Breast Health Care through Resource-Stratified Phased Implementation

Copyright 2018©, BHGI. All rights reserved. With the exception of a copy for personal use, no part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from Breast Health Global Initiative.
iBreastExam
Specificity in a Screening Population

Ari D. Brooks, MD MS Ed.
Professor of Surgery
Chief, Endocrine and Oncologic Surgery and
Director, Integrated Breast Center at
Pennsylvania Hospital
University of Pennsylvania

Global Breast Health Initiative
Seattle, WA
October 15, 2018
Disclosure

• I am a co-inventor of this technology
• Drexel University College of Medicine owns the patent
• I have no financial relationship with UE LifeSciences (the parent company of the iBreastExam)
 – But they did buy my plane tickets and lend me a room in the Airbnb
Statement of the problem

• Mammogram screening is excellent in resource rich countries (in resource rich parts of…)
• First line mammography is very expensive.
• First line mammography reduces sensitivity.
• Pre-screening (triage) can reduce reliance on mammography (or clinician operated ultrasound).
• Classic strategies for triage in low resource populations include:
 – Breast self awareness
 – Clinical Breast Exam (health worker breast exam)
 – Risk assessment
iBreastExam Solution

- 4x4 piezoelectric (PZT) sensor array measures elastic modulus in RT.
- Sensors measure tissue compression and stiffness by making top-down tactile palpations from skin surface.
- Applies a gentle force and measure subtle displacements electrically, all within the sensor - electronic palpation device.

- Standardized & objective breast exam to identify clinically relevant lumps at the POC.
- Enables resource-conscious pre-screening.
- Usable by CHWs w/ minimal training.
iBE USA studies to date

- **1st study Feasibility**¹
 - 40 pts with clinically significant lesions
 - 4 finger prototype probe
 - 46 lesions
 - 15 cancers
 - 87% sensitivity for lesion detection

- **2nd study**² FN rate
 - 78 pts with clinically significant lesions
 - 16 finger iBE device
 - 77 lesions (quadrant w/abnl findings)
 - 12 cancers
 - 86% sensitivity for lesion detection
 - 83% sensitivity for cancer
 - 89% specificity (compared to negative quadrants)

*Funded by State of PA CURE Grant # 4100059198

¹JACS 2013 216: 1168-73
²WJSO 2016 14:277
Global Implementations & Validations

- 150,000+ enrolled in multiple implementation projects globally
- 5-7% are positive on iBreastExam
- Follow-up rate is approx. 70–80%
- 120 confirmed diagnoses
- Single largest implementation in Maharashtra, India (75,000+)

- 10,000+ enrolled in 11 IRB cleared clinical and implementation studies
- Studies aim to assess:
 - Efficacy to detect clinically relevant lumps (BIRAD 0, 3, 4, 5)
 - Detection rate, Follow-up rate, Usability, Feasibility & Acceptability
iBE 3rd United States study*

• In a screening population with best chance of true diagnosis:
 Specificity (False Positive Rate) and Negative Predictive Value (NPV)
• All women for screening mammography or additional images after screening mammography
• Enrolled women get CBE, iBE, and Mammograms
• Follow up based on Mammo or symptoms (dx mammo, ultrasound, MRI, biopsy)
• Mammogram results defined as:
 Birads 1-2 = Negative Birads 0,3,4,5,6 = Positive
• Stats: CBE, iBE to each-other and Mammogram findings
 Sensitivity, Specificity, PPV, NPV Kappa - agreement

*Funded by State of PA CURE grant # 4100059198
iBE 3rd United States study

- 516 women enrolled
- 490 iBE completed
- 501 had Mammo and CBE
- 48 had Ultrasound
- 22 biopsies
- 7 MRI
- 5 women with cancer identified (2 bilateral)
Can iBE tell who needs a mammogram?

- **iBE vs. Mammogram**
 - Sensitivity: 80%
 - Specificity: 35%
 - NPV: 99.5%
 - Kappa: 0.08 (low)

<table>
<thead>
<tr>
<th>Mammogram negative (1,2)</th>
<th>Mammogram positive (0,3-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBE negative</td>
<td>363</td>
</tr>
<tr>
<td>iBE positive</td>
<td>90</td>
</tr>
</tbody>
</table>

- **iBE vs. CBE**
 - Kappa: 0.5 (good)

<table>
<thead>
<tr>
<th>CBE negative</th>
<th>CBE positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBE negative</td>
<td>373</td>
</tr>
<tr>
<td>iBE positive</td>
<td>50</td>
</tr>
</tbody>
</table>
Can iBE tell who doesn’t have cancer?

Mammogram vs. Cancer

- Sensitivity 100%
- Specificity 94%
- NPV 99.8%

<table>
<thead>
<tr>
<th></th>
<th>Not Cancer</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammogram negative</td>
<td>467</td>
<td>0(1)</td>
</tr>
<tr>
<td>Mammogram positive</td>
<td>29</td>
<td>5(6)</td>
</tr>
</tbody>
</table>

iBE vs. Cancer

- Sensitivity 60%
- Specificity 80%
- NPV 99.5%

<table>
<thead>
<tr>
<th></th>
<th>Not Cancer</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>iBE negative</td>
<td>386</td>
<td>2(3)</td>
</tr>
<tr>
<td>iBE positive</td>
<td>99</td>
<td>3(4)</td>
</tr>
</tbody>
</table>

CBE vs. Cancer

- Sensitivity 60%
- Specificity 87%
- NPV 99.5%

<table>
<thead>
<tr>
<th></th>
<th>Not Cancer</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE negative</td>
<td>430</td>
<td>2(3)</td>
</tr>
<tr>
<td>CBE positive</td>
<td>66</td>
<td>3(4)</td>
</tr>
</tbody>
</table>
iBE 3rd United States study

• Cancer Detected by iBE, CBE, :
 1. 3cm Left palpable. Right DCIS mammo only
 2. 1.2cm Right invasive and 1.7cm Left invasive both palpable
 3. 2.7cm Right invasive palpable retro-areolar

• Cancer Not Detected by iBE or CBE:
 1. 3mm Right invasive
 2. 1.3cm Right invasive
iBE, CBE, Mammo Results Map

CBE Positive
13

iBE Positive
42

Mammo Positive
22

501 total

12
Other screening studies

• Bangalore, India 2016
 989 asymptomatic & 20 symptomatic
 Median age 47 yrs.
 All received iBE, CBE and MMG/USG
 8 cancers diagnosed
 iBE Vs. screening MMG
 Sensitivity 84 %
 Specificity 94 %
 NPV 98 %

• Rio, Brazil 2018
 226 asymptomatic at 2 primary care clinics.
 Median age 54 Yrs.
 217 rcvd. MMG, 161 rcvd. US, 152 rcvd. MMG & US
 9 cancers diagnosed
 iBE Vs. MMG + USG
 Sensitivity 82 %
 Specificity 87 %
 NPV 99 %
Summary

• iBE provides excellent NPV and performed equivalent to CBE
• iBE has a record of sensitivity over 80% for clinically significant lesions.
• 150,000 exams in LMIC, iBE has proven to be practical in our target population and compatible with multiple types of delivery models.
• iBE and CBE can synergize as pre-screening tools to significantly reduce the population that needs additional screening.
• Increasing the accuracy of CBE and building a program around a portable and inexpensive device can help with participation.
• Technology is only part of the answer to the problem of access to screening.
• Once a breast problem is identified, there is still the need for diagnostic imaging, biopsy and treatment…
Acknowledgments

US clinical research team Penn:
- Brian Englander MD
- Cynthia Gifford CRNP PhD
- Robyn Broach PhD
- Sanjana Reddy
- Holly Thrash
- Rula Geha MD
- Richard Sensenig

US basic research team Drexel:
- Wan Shih, PhD
- Wei Shih, PhD
- Hakki Yegingil PhD
- Xin Xu PhD

UE LifeSciences
- Mihir Shah
- Matthew Campisi