As pioneers in cancer research, scientists at Fred Hutchinson Cancer Research Center push the boundaries of medical science to find new ways to prevent, detect and treat cancer and related diseases. Our culture of innovative thinking and collaboration has led to critical lifesaving breakthroughs that have saved thousands upon thousands of lives. We are advancing science for life.

ADVANCING SCIENCE FOR LIFE

Message from the President
Investing in scientific innovation: You make progress against cancer possible

As I complete my first year as director of Fred Hutchinson Cancer Research Center, I am pleased to give you positive news in our battle against cancer. The National Institutes of Health reported that cancer deaths and new diagnoses are declining, proof we are making significant progress against these devastating diseases.

The Hutchinson Center has directly contributed to this progress with scientific innovations that have improved methods for detecting, treating and preventing cancer. Here are a few examples you will read about in this annual report:

- The Hutchinson Center’s research teams have had a clear impact on breast cancer prevention. Our scientists who lead the Women’s Health Initiative—the largest study of women’s health ever undertaken—continue to make breakthroughs that reduce cancer risk and improve women’s health. This year, teams led by Dr. Andrea LaCroix made two prevention discoveries that will further reduce breast cancer incidence.

- Building upon our pioneering development of bone marrow transplantation, our scientist-physicians have relentlessly refined the procedure to save even more lives. This year, Dr. George McDonald’s analysis of these efforts showed they have led to unparalleled improvements in blood cancer survival rates at our transplant clinic.

- A discovery by our prostate cancer researchers this year could pave the way for a simple blood test to identify patients who should receive aggressive treatment. The team, led by Dr. Janet Stanford, identified genetic markers linked to aggressive, lethal prostate cancer. Such a screening test could reduce overtreatment of indolent prostate tumors.

- Dr. Nina Salama, who focuses her work on the bacterium that causes stomach cancer and gastric ulcers, this year found a chink in its armor that she hopes to exploit to eliminate these diseases. Nina discovered that the corkscrew shape of Helicobacter pylori is essential to its survival in the stomach. Creating a targeted therapy to disable the proteins that determine the bug’s shape would keep it from colonizing the stomach and causing disease.

- We are also developing “Star Wars”-like technologies to correct and disable genes so we can use this genetic surgery in combination with blood stem cell transplants to cure diseases. Drs. Hans-Peter Kiem and Keith Jerome broke new ground this year by exploring its potential to cure HIV by specifically knocking out one of the receptors the HIV virus needs to infect the immune system’s helper T-cells.

These are just a few examples of our recent advances, which could not have been made without your generous contributions. Many additional innovations are described in this annual report. We are extremely grateful for your ongoing investment in scientific innovation that moves our lifesaving research forward. Thank you.

New heights in cancer and infectious disease research

This year was exciting— one of change and success for Fred Hutchinson Cancer Research Center. We welcomed our fourth president and director, Dr. Larry Corey, whose vision and leadership will take the Hutchinson Center to new heights in cancer and infectious disease research. Center scientists continued to explore uncharted frontiers, capitalizing on the interdisciplinary, collaborative culture unique to the Center. We also celebrated a record-breaking fundraising year with more than $44.4 million generated from committed supporters like you.

Thank you for partnering with the Center in our quest to eliminate cancer and related diseases as causes of human suffering and death. Your investment enables researchers to explore creative and novel ways to tackle complex scientific problems.

It is this “out of the box” thinking— dependent on private support like yours—that paves the way to improve the lives of countless patients and their families now and in the future. We are honored by your trust and support.
The human immune system has a remarkable ability to seek out, recognize and eliminate abnormal cells in the body. Immune system components such as T-cells and antibodies can selectively kill cancer cells or cells infected with a virus while leaving normal cells intact.

Fred Hutchinson Cancer Research Center scientists were the first to demonstrate the power of the immune system to cure cancer when they developed bone marrow transplantation to treat leukemia and other cancers of the blood. Over the past three decades, we have built a deep understanding of this therapeutic effect and have led the way in developing more techniques to harness the immune system to treat cancers—a field called immunotherapy.

Our leadership in the field was recognized this year by the National Cancer Institute when it selected the Hutchinson Center to direct the new Cancer Immunotherapy Trials Network. The network—led by Dr. Mac Cheever, head of the Hutchinson Center’s Solid Tumor Research Program—brings together the collective expertise of 27 research institutions across the country to accelerate clinical trials of the most promising immunotherapies for solid tumor cancers.

As a widely recognized center of excellence in immunotherapy research, the Hutchinson Center is increasingly relied upon to participate in and lead such national and international collaborations. Our ability to seize these opportunities has been significantly strengthened by the financial support of our donors.

A high point was reached this year when many supporters made contributions to complete the Bezos family challenge gift for immunotherapy research. Their extraordinary gift and leadership united the community in funding this potentially transformative cancer treatment.

“How is medical progress made? With transplantation, we are talking about a series of little steps, one on top of another on top of another.”

That’s how Dr. George McDonald characterizes his recent study that showed how a decade of steady refinements by Hutchinson Center researchers to bone marrow and stem cell transplantation led to unparalleled improvements in blood cancer survival rates.

Our researchers pioneered transplantation more than 40 years ago—and they remain the world’s leaders in the field. McDonald’s study underscores that fact. Comparing survival rates of patients treated by Center physicians in the mid-1990s to those in the mid-2000s, he and his colleagues reported a 60 percent drop in the risk of death within 200 days of transplant and a 41 percent reduction at any time after transplant.

“This kind of progress in the field of cancer, in cancer studies, is unheard of,” McDonald said.

The study also revealed the one-year survival rate jumped from 55 percent to 70 percent. They also found significant declines after transplantation in the risks of severe graft-vs-host disease, infections, and complications from damage to the lungs, kidneys and liver.

As the world approaches 1 million transplants, we celebrate these remarkable advances that have improved survivorship for people with life-altering blood cancers.
A new kind of prostate cancer screening could one day determine which patients need aggressive treatment and which would benefit from a more conservative “active surveillance” approach.

Led by the Hutchinson Center’s Dr. Janet Stanford, an international team of researchers this year identified five inherited genetic variants strongly associated with aggressive, lethal prostate cancer.

If the biomarkers prove valid in further studies, a resulting simple blood test could decrease the personal toll and economic burden of prostate cancer overtreatment.

“Tests that can distinguish between patients with indolent tumors versus more-aggressive tumors are urgently needed,” Stanford said. “The panel of biomarkers we’ve identified provides the first validated evidence that inherited genetic variants play a role in prostate cancer progression and mortality.”

The researchers analyzed DNA in blood samples taken from a group of more than 4,000 prostate cancer patients. They looked for variants within the DNA alphabet to identify those that appeared to play a role in the development or progression of the disease. Patients who carried four or five of the genetic markers had a 50 percent higher risk of dying from their prostate cancer than patients who had two or fewer.

This year brought two historical leaps forward in our understanding of a common form of muscular dystrophy—the biggest steps in two decades—paving the way for better diagnosis and treatment.

Facioscapulohumeral muscular dystrophy (FSHD), characterized by progressive weakening and loss of skeletal muscle, is the most prevalent type of the condition. FSHD is a genetic disease, caused by a flaw in the DNA instructions near the end of chromosome 4. In those with FSHD, the DNA sequence is cut short. But here’s the puzzle: not everyone with this so-called “contraction” gets FSHD.

The Hutchinson Center’s Dr. Stephen Tapscott, working with a multinational team, discovered that people with FSHD have both the DNA sequence contraction and a molecular signal that tells cells not to destroy a rogue protein, allowing it to cause chaos in the form of FSHD.

They also found that the disease is caused by a faulty “off” switch for a particular retrogene, normally expressed only in early development and then tamped down in all other cells of the body. When the retrogene isn’t suppressed, it bursts in the muscle cells and leads to cell death and muscular dystrophy. It is the first time in genetic research history that a retrogene has been found to “wake up” and cause disease.

The basic biology of a disease must be understood before treatment targets are clear. These landmark findings will make it easier to diagnose FSHD and better predict who will get the disease, even before symptoms appear, as well as provide critical focus for future development of FSHD therapies.

For 20 years, research from the Hutchinson Center-based Women’s Health Initiative has saved thousands of lives by debunking conventional wisdom and allowing millions of women and their doctors to make key health decisions based on scientific evidence.

The WHI’s biggest landmark was the finding that combined hormone replacement therapy (estrogen plus progestin) to manage the symptoms of menopause increases a woman’s risk of breast cancer and heart disease. Use of the once-widespread therapy immediately dropped, followed by a consequent decline in breast cancer in the U.S.

Hutchinson Center researchers with the WHI continue to make important discoveries, including a new study this year by Dr. Andrea LaCroix showing certain women who used only estrogen hormone therapy had markedly reduced risk for breast cancer and heart attacks.

Her estrogen-only hormone study followed nearly 11,000 women for an average of 11 years, the most extensive look at the topic. Women in their 50s taking estrogen had a lower risk of heart attack, but the risk was increased for those in their 70s. The risk of breast cancer was reduced for all ages. LaCroix and colleagues also found that strokes and other health problems linked with estrogen pills appeared to fade after the medication was stopped.

From this and numerous other findings, the Women’s Health Initiative continues to contribute a greater understanding of the role of hormones, diet and calcium on midlife female health.
Stomach cancer bug: Its unlocked secrets could reveal new treatments

Among the 100 trillion bacteria living in the human body, Helicobacter pylori has managed to infect half the world’s bellies. For tens of thousands of years, H. pylori has for the most part caused us no harm. But in some people, H. pylori becomes a destructive guest, leading to painful ulcers, and sometimes, deadly stomach cancer.

H. pylori, like any other living organism, has many tools at its disposal for survival, and it has adapted successfully to its environment. Because it’s capable of causing disease, researchers have been trying to figure out its strengths and weaknesses and the sort of tools that enable it to thrive in the stomach’s caustic surroundings.

This year, Hutchinson Center researcher Dr. Nina Salama and colleagues unlocked one of its main secrets: H. pylori’s corkscrew shape is essential to its survival because it allows it to burrow deeply into the moist lining of the stomach, where it is safe from highly corrosive hydrochloric acid that aids digestion.

H. pylori has four key proteins that turn it into a corkscrew. But if you remove these proteins, the bacterium has trouble colonizing the stomach.

Now, Salama and her team are working to apply their discovery to create a vaccine that selectively targets only these proteins. If the bacteria can’t colonize, they won’t be able to cause disease, eliminating gastric ulcers and gastric cancers.

Traffic patterns of brain cells: Clues to cancer spread?

A study on the “traffic patterns” of cells and how they travel has shed new light on how cells migrate in the developing brain, which may also reveal how other types of cells, including cancerous ones, travel within the body.

This groundbreaking research by the Hutchinson Center’s Drs. Jonathan Cooper and Yves Jassin could lead to a better understanding of neurological development and how cancer spreads.

In the developing brain, the cerebral cortex—the command and control center—grows from the inside out, adding new neurons to the outermost layer. The researchers solved the mystery of how this migration is regulated, finding that a signaling protein called Reelin guides the new neurons into place by triggering changes in the membranes of the migrating neurons that allow the cells to respond to direction signals.

The scientists observed that a membrane protein called N-cadherin increases on the surface of the neurons when the neurons encounter Reelin, which helps the cells choose the appropriate direction for the next stage of migration. Elsewhere in the body, N-cadherin holds cells in place, so this unexpected role may help explain how normal and cancerous cells move around.

Suspended animation could lengthen storage time of human organs and extend transplantation to more people

In Dr. Mark Roth’s Hutchinson Center lab, organisms such as roundworms and yeast have been subjected to lethally cold temperatures and survived unharmed—after he first put them into a state of suspended animation.

But this is no mere lab exercise for Roth and his scientific team. He wants to save lives.

His technique of inducing suspended animation via oxygen deprivation and induced hypothermia may soon extend the shelf life of human organs for transplants, a development that could make transplantation an option for more people in need of replacement organs.

For several years, Roth has focused his research on finding lifesaving applications for suspended animation. Once the sole province of science fiction, it is now reality at the Hutchinson Center. In addition to aiding organ transplants, it also could buy time for patients in trauma situations, such as victims of heart attack or blood-loss injury, by reducing the need for oxygen until definitive medical care can be given.

Depriving yeast and worms of oxygen before putting them into a deep freeze helped answer several questions. Under normal conditions, 99 percent of these species die when exposed to temperatures just above freezing for 24 hours. But if they’re first deprived of oxygen and then enter a state of anoxia-induced suspended animation, 66 percent of the yeast cells and 97 percent of roundworm (nematode) embryos will survive. Once normal growth conditions are resumed—through rewarming and reintroduction of oxygen—the organisms will reanimate and go on to have normal lifespans.

“We have found that extension of survival limits in the cold is possible if oxygen consumption is first diminished,” Roth said. “Our experiments in yeast and nematodes suggest that organs may last longer outside the body if their oxygen consumption is first reduced before they are made cold.”
Better breast cancer treatment, fewer side effects from targeted therapy

Cancer research takes teamwork, and few institutions know teamwork as well as the Hutchinson Center. That’s why the National Cancer Institute recently chose the Center to lead a five-year, Seattle-based breast cancer research consortium.

The consortium’s goal: to improve breast cancer prevention, detection, treatment and care for women who have or are at risk for the disease. Led by the Hutchinson Center’s Drs. Peggy Porter and Mac Cheever, the Seattle Cancer Consortium Breast SPORE (Specialized Program in Research Excellence) involves 25 researchers from the Center and University of Washington as well as project consultants from institutions across the U.S.

“Fewer side effects from targeted therapy”

Breast cancer researchers make progress on several fronts

The Hutchinson Center’s unique approach to breast cancer research unites scientists from a spectrum of disciplines: basic science, genetics, clinical medicine, cancer prevention and epidemiology. This year, our researchers made several discoveries to further our mission of reducing breast cancer incidence and deaths.

The osteoporosis drug lasofoxifene reduced breast cancer risk by 79 percent in postmenopausal women with low bone density, according to a study by Dr. Andrea LaCroix. The drug also substantially reduced risk of stroke, heart events and fractures. Lasofoxifene poses fewer safety concerns and provides more benefits than similar drugs, making it an “attractive option” for postmenopausal women with osteoporosis, LaCroix said.

Full-term pregnancy has long been associated with a reduced risk of breast cancer, but a study led by Dr. Amanda Phipps found that the more times a woman gives birth, the higher her risk of “triple-negative” breast cancer, a relatively uncommon but particularly aggressive form of the disease. Conversely, women who never give birth have a 40 percent lower risk of such breast cancer, which has a poorer prognosis than other types of breast cancer.

“We were surprised by these findings because researchers have known for quite some time that women who have children, especially those who have them at an early age and have multiple full-term pregnancies, have a lower risk of breast cancer overall,” Phipps said.

A study by Dr. Kathi Malone and colleagues. These findings underscore the need for women diagnosed with a first breast cancer at a young age—regardless of family history—to consider genetic testing and to discuss it with their health care providers,” Malone said.

It’s well known that cancer has become the world’s leading cause of death, killing about 8 million people annually. What may be surprising is the fact that infectious diseases cause more than 20 percent of the world’s cancer cases.

“Several common viral and bacterial infections can lead to cancers, such as stomach, liver, cervical, bladder, Kaposi sarcoma and lymphoma. Because these infections can be prevented or controlled, they represent an immediate opportunity to reduce the world’s cancer burden—by preventing the development of cancer in the first place.

As a leader in the prevention and treatment of cancer and infectious diseases, the Hutchinson Center is uniquely suited to address this problem. By working in a country where infection-related cancers are common, our researchers and colleagues at the Uganda Cancer Institute (UCI) are accelerating new prevention and treatment breakthroughs.

The two institutions formed an innovative collaboration—the UCI/Hutchinson Cancer Center Alliance—designed to make substantial inroads against infection-related cancers. The collaborators broke ground this year on an integrated research, training and treatment facility—the first comprehensive cancer center jointly constructed by U.S. and African cancer institutions.

“At the forefront of finding cancer at its earliest, most curable stages

The key to curing cancer is to catch it early. For many common cancers, nine of 10 patients can be saved when their cancer is detected early, before it grows out of control.

The Hutchinson Center has been at the forefront of early cancer detection for many years, and this year the National Cancer Institute tapped the Center to continue coordinating its multi-institution Early Detection Research Network.

Finding cancer when it is most treatable and curable is a remarkably daunting challenge—to find it at this stage amounts to conducting molecular detective work. But thankfully, even cancer can’t make a move without leaving a trail of telltale signs.

This is where biomarkers come in. Much like the presence of an antibody indicates an infection, the presence of certain proteins in the blood—biomarkers—may indicate cancer. Center researchers have been among the pioneers, having made a number of landmark biomarker discoveries that have greatly accelerated progress in the field.

Tackling the problem of cancer in the developing world

“Through this collaboration, we hope to develop new, low-cost prevention and treatment strategies that will not only stem the rising burden of cancer in sub-Saharan Africa but will benefit millions of people worldwide,” he said.

The program will increase patient access to diagnostic technology and research-based treatment while furthering study on the links between infectious diseases like HIV and Epstein-Barr virus and cancers such as Kaposi sarcoma and Burkitt lymphoma.

The planned state of the art, integrated cancer training and treatment facility

Viral and bacterial infections are contributing factors in:
- Lymphoma
- Sarcoma
- Stomach cancer
- Oral cavity cancer
- Liver cancer
- Bladder cancer
Real-world science for students: Mentoring the next generation of researchers

Science is the foundation for many great discoveries that benefit humankind, and science education is essential to ensuring a better quality of life for all of us. That’s why the Hutchinson Center is committed to improving science education in our schools and mentoring the next generation of scientists.

This year, about 30 students from colleges across the country participated in our Summer Undergraduate Research Program. It’s a competitive nine-week internship that provides experience for students interested in careers in biological research—with a special reach into populations traditionally underrepresented in science and health care.

Students work with faculty mentors who equip them with the skills to be fully functioning members of the scientific community. By making real-world science relevant and exciting for these promising students, we help pave the path for their careers in science.

We also established a teaching laboratory this year for two high school education programs that provide intensive training to promising students during the school year. Our unique programs with Seattle’s Cleveland High School and Federal Way’s Technology Access Foundation Academy focus on a spectrum of techniques and equipment used in biomedical research, which they normally wouldn’t encounter until graduate school.

These programs expand upon our 21-year-old Science Education Partnership, which has trained hundreds of high school science teachers in the use of lab research tools in their classrooms, and our 13-year-old Hutch High symposium, which has brought more than 3,700 students to our campus for an introduction to lab research.

Could we correct disease-causing genetic defects before they occur?

The human body contains more than a trillion cells, and it’s remarkable that the genetic information in each cell—in the form of 46 chromosomes—starts out the same. However, each time our cells divide, the potential for mistakes arises. Cancer cells, for instance, have the wrong number of chromosomes.

So how do our cells get all the right chromosomes when they divide?

For the first time, a scientific team, which included the Hutchinson Center’s Dr. Sue Biggins, discovered how cells stabilize their machinery for forcing apart chromosomes. When a cell gets ready to split into new cells, this steady mechanism permits the genetic material to be separated and distributed accurately.

The researchers isolated kinetochores, a tower-like mechanism for each chromosome that attaches to a structure called a spindle. They found that during cell division, kinetochores are under tremendous force as the spindle pulls the chromosome through the cell. The kinetochores manage to stay attached to the spindle by binding more tightly when force is applied, similar to a finger trap toy.

“Many cancer cells have mutations in the proteins that make up the kinetochore, so we are optimistic that we can now understand exactly what is wrong with kinetochores in cancer cells,” Biggins said. “This knowledge could potentially lead to ways to correct defects before they occur, or allow us to try to target cells with the wrong number of chromosomes to prevent them from dividing again.”

Gene therapy in combination with blood stem cell transplants could hold the key to curing HIV

Hutchinson Center researchers broke new ground in the treatment of HIV this year by exploring the potential of blood stem cell transplantation to cure those infected with the AIDS-causing virus.

Drs. Hans-Peter Kiem and Keith Jerome were selected by the National Institutes of Health to lead a multifaceted team of scientists and institutions to determine whether a person’s own stem cells can be engineered to deny HIV entry into the body’s blood cells. They also will work to develop tools to eradicate existing reservoirs of infection in the body.

“Funding for research to find a cure for HIV-infected persons represents a paradigm shift,” said Jerome, an expert in viral infections at the Hutchinson Center and the University of Washington. “HIV has been an incurable, lifelong infection that at best sentences people to a lifetime of complex drug therapies. Now the research field is shifting to address the possibility of a cure. No one would have talked about this approach five years ago.”

One approach under investigation is stem cell transplantation, in which the infected patient’s own immune cells are genetically modified to be resistant to HIV by eliminating one of the receptors HIV needs to infect new cells. Led by Kiem, this method builds on the Hutchinson Center’s long-standing expertise in using transplantation to treat and cure blood cancers and some autoimmune diseases.

Stem cell transplantation to eliminate HIV infection has an intriguing precursor. In 2008, a group of German physicians published results of transplanting an American man who had leukemia and HIV. The so-called “Berlin Patient” received a new immune system from donor cells that also carried a rare genetic variation that made them resistant to the virus. Today, the patient is considered cured of HIV. However, few people have this genetic variation, so a way must be found to modify the patient’s own immune cells to resist HIV.

DR. HANS-PETER KIEM

Gene therapy in combination with blood stem cell transplants could hold the key to curing HIV
Private Contributors Fiscal Year 2011

Fred Hutchinson Cancer Research Center relies on private contributions to continue its advanced scientific pursuits. This crucial support aids in the advancement of ideas, as well as our efforts to fight against cancer and related diseases. We are grateful to each of the 23,055 donors who provided $44.4 million in contributions and in-kind gifts between July 1, 2010, and June 30, 2011. Each of the institutions, corporations, foundations, and organizations listed below contributed at least $100,000 fiscal year 2011.

Robert David and June Garvey
Michael and Lynn Garvey

The Cancer Research Institute

Richard W. Weiland Estate

Bank of America

Seattle Foundation

Mr. and Mrs. W. M. Keck

Mr. and Mrs. Adam L. Usdan

Ms. Jean J. Thompson

Mr. Jeffery D. Gavron

Ms. and Mr. Michael Uchida

Mr. and Mrs. William R. Lewis

Mr. and Mrs. Douglas C. Lawrence

Mr. and Mrs. Jorn Nordmann

Mr. Tom Robinson and Ms. Carla Murray

Mr. and Mrs. Frank J. Tonkin, Jr.

Mr. Jameson N. Dowell

Mr. James G. Scripps Estate

Mr. and Mrs. J. Michael Johnston

Mr. and Mrs. Louis L. Borick

Mr. and Mrs. Douglas C. Lawrence

Mr. and Mrs. Louis L. Borick

Mr. and Mrs. James R. Baillie

Mr. and Mrs. James R. Baillie

Mr. and Mrs. James R. Baillie

Mr. and Mrs. Louis L. Borick

Mr. and Mrs. James R. Baillie

Mr. and Mrs. James R. Baillie
Thank you for joining us in our mission to eliminate cancer and related diseases as causes of human suffering and death. Private donations like yours are essential for Fred Hutchinson Cancer Research Center to respond rapidly to novel research opportunities that often lead to important medical breakthroughs.

Financial support from our benefactors enables us to attract and retain the world’s top scientists, to provide patients at the forefront of groundbreaking clinical research to explore better ways to prevent, detect and treat all forms of cancer. Private gifts also leverage significant additional investment by allowing our researchers to successfully compete for prestigious foundation grants that do not cover the full cost of research.

In addition to our groundbreaking research, your gift sustains critical support services for the patients and families who turn to Hutchinson Center doctors for lifesaving treatment. Programs include Pete Gross House; Hutch Cancer Center Information Service; Long-Term Follow-Up Program; Survivorship Program, part of the LIVESTRONG Survivorship Center of Excellence; and Cancer Prevention Clinic located at the Seattle Cancer Care Alliance.

The many accomplishments that keep the Hutchinson Center at the forefront of biomedical research could not be achieved without your generosity. Thank you.
Boards

JULY 1, 2010 – JUNE 30, 2011

BOARD OF TRUSTEES
Doug Walker, Chair
Steve Davis, Vice Chair
Salty Hendricks, Immediate Past Chair
Karen Edge, Treasurer
Doug Williams, PhD, Secretary
Ric Anderson
Holly Gillen
Hein Gassen
Pete Hanley
Ron Howell
Ellie Lerner
Richard B. McCune
Hassan Mejri
Robert Nelson
Peter Newhart
Charles Nolan, M.D.
Jim Sinegal
Stephen V. Sundberg, S.R.
Vijay Vaitheeswaran

BOARD OF AMBASSADORS
Rich Anderson, Co-Chair
Colin Berliner, Co-Chair
Jean Butler, Co-Chair
Conor Anderson*
Robert M. Avison*
Robert Bayne*
Rae Bayne
Rick Beggs
Sally Bluestein Bannister*
Ronald Berens, M.D.
Janina Berner**
Eric Berrier**
Philip Banay
Hugh Chang
Robert F. Cole, CoD
Edward O. Davis, M.D.
David R. Davis, M.D.*
Barbara Davis
Phyllis Eden*
Cathy Forte
Edward Fratley
Robert T. Gahm
Ginny Gilchrist
Freda Goldsby
Steve Goldfarb
Stephen M. Graham
Kim Greenbaum
Deborah Haug
Bob Herbold
Chuck Hirsch
Ron Howell
John Hwang*
Stuart K. Hutchinson, M.D.

Leadership

Larry Cahey, M.D.
President and Director
Mark Greenblatt, M.D., Ph.D.
Executive Vice President and Deputy Director
Myra Tarr
Executive Vice President and Chief Operating Officer
Frederick Aurbach, M.D.
Senior Vice President
Director, Clinical Research Division
Jonathan Cooper, Ph.D.
Senior Vice President
Director, Basic Sciences Division
Daniel Gotthardt, Ph.D.
Interim Director
Human Biology Division
Jude Micallef, M.D., Ph.D.
Senior Vice President
Co-Director, Vaccine and Infectious Disease Division
Rose Prentice, Ph.D.
Senior Vice President
Director, Public Health Sciences Division

Jerem Balbo
Vice President
Strategic Resources
Tony Bazett
Vice President
Chief Information Officer
Susan Gifford, Ph.D.
Vice President
Development
Linda Gaiser
Vice President
External Affairs and Communications
Randy Main
Vice President
Chief Financial Officer
Ursula Muilen, Ph.D.
Vice President
Industry Relations and Clinical Research Support
Hann Nucklick
Vice President
Human Resources

Scott Navin
Vice President
Facilities and Operations
Doug Segraves
Vice President
General Counsel

Robert’s Taylor
Barbara Thoene
Barney Towne*
Moy H. Wiss
Scott Wilson
Cindy Zehnder**

S E N I O R C O U N C I L
William W. Corbisiero
Vincent C. Covello, Jr.
David F. Foytcheff
Ebbe Garrot
Irv Hajj
Frank M. Hepple
Simeon M. Lacks
David Lopata
George Mathremanis, Ph.D.
James E. Ryan
William J. Saltzstein, S.J.
George Walker

* Denotes dual membership on Board of Ambassadors and Senior Council

ADVANCING SCIENCE FOR LIFE

ANNUAL REPORT
Published by the External Affairs and Communications Department
Fred Hutchinson Cancer Research Center
Mail Stop J5-200
PO Box 19024
Seattle, WA 98109-1024
206.667.4399
www.fhcrc.org

© 2011 Fred Hutchinson Cancer Research Center
Gordon Taylor
Editor
Barbara Mabon
Art Director
Sethina Nol
Social Media
Dave Forbes
Photographers

Ighazo Ukoli
Cecilia Sinton
Gordon Taylor
Writers