COMMEMORATIVE ISSUE
1975–2015
CURES START HERE
FRED HUTCHINSON CANCER RESEARCH CENTER

40 YEARS OF CURES
LIVES SAVED,
TRANSFORMED,
RESTORED — and we’re just getting started
EVERYTHING WE DO HERE AT FRED HUTCH STARTS AND ENDS WITH PATIENTS.

Decades ago, it was one patient — baseball great Fred Hutchinson — who inspired everything that is happening today inside our labs. In the 40 years since we opened our doors, patients have continued to propel our quest for better treatments and cures.

As a physician-researcher, I’ve seen up close the impact one life — or one death — can have on a family. Each life sets off ripples that stretch out far into the future. Each life matters profoundly and uniquely.

As I take the helm of this remarkable organization during this anniversary year, I’m awed by those who’ve come before me and I’m inspired by what is ahead.

I met Dr. Don Thomas and his wife, Dottie, years ago when he was a magnificent figure in the area of bone marrow transplantation and I was a young researcher. I was awestruck when he invited me to sit down with him and talk about science and where transplantation was going.

Today, from my office in the building on campus named for him, I am reminded constantly of what’s possible with bold vision, research and drive.

Don’s legacy continues every day at Fred Hutch. It continues through our faculty, which has an extraordinary presence nationwide and worldwide. It continues through the amazing discoveries and advances in the treatment of cancers, particularly blood-borne cancers, and key findings in the areas of prevention, detection and basic science that have come from Fred Hutch.

I’m delighted to build on the past leadership of this institution and the work Dr. Larry Corey has done to translate our findings into better care around the world. We are expanding our expertise in solid tumor biology through the work being done by Dr. Eric Holland and his team. Also, immunotherapy has as much opportunity for curing cancer as we’ve seen. We have a bold goal here. We’re looking to eradicate cancer.

We can’t do it alone. We need our partners — Seattle Cancer Care Alliance, the University of Washington and Seattle Children’s — and we need you.

Your generosity is so important to us. We have a chance, as we think about areas such as immunotherapy and precision oncology, to take a quantum step forward. Your support means we can get right to work. There’s never been a more important time to be nimble.

For the past 40 years, cures have started at Fred Hutch — and we’re just getting going. Together, we will cure cancer.

Dr. Gary Gilliland
President and Director
Nancy Lowry knew she was sick — but she had no idea she was about to help make history.

It was August 1960 and the 6-year-old had recently been diagnosed with aplastic anemia. Now her bone marrow wasn’t able to create enough new blood cells and the frequent transfusions she got were no longer working. She was dying, although her parents kept that from her.

They had heard about an experimental procedure that was still in its infancy but might offer a chance: bone marrow transplantation. At University Hospital in Seattle, Lowry met Dr. E. Donnall Thomas, now known as the “father of bone marrow transplantation,” who served on her transplant team. Years later, after the formation of Fred Hutchinson Cancer Research Center and after many more transplants, he would go on to win the Nobel Prize.

But back then Thomas was in the very early stages of pioneering the procedure. Lowry’s donor was her identical twin sister, Barbara, who underwent 50 needle aspirations to get the needed marrow.

“I was aware something sort of magical had happened,” said Lowry, now 61, of her transplant. “I was sick — and a month later I was not sick.”

Lowry’s was among the first successful bone marrow transplants. An Associated Press article published in 1961 said neither of the two other attempts listed in medical literature had worked.

“What’s important is that [Thomas] kept persisting,” Lowry said.

His continued research, alongside his wife, Dottie, and the procedure’s promise convinced Seattle surgeon Dr. Bill Hutchinson to make Thomas’ work a central part of the cancer research institute he was establishing. In 1975, the doors opened on Fred Hutchinson Cancer Research Center, which Bill founded as a living tribute to his brother Fred, a Major League Baseball player and manager who died of lung cancer in 1964 at age 45. Lowry completely recovered, and her experience fueled her drive to help others. She earned a master’s degree in nursing and went on to work with children, first as a public health nurse and now as a school nurse in the Pacific Northwest. Her donor and twin, Barbara, became an occupational therapist.

“Back then, medical miracles were few and far between. People saw each breakthrough with a sense of wonder,” Lowry said. “People told me what a sense of hope that transplant gave people.”

That sense of wonder is at the foundation of Fred Hutch, where researchers such as Dr. Rainer Storb, age 79, delay retirement because they can’t wait to find out what happens next. Driving it all is the most basic, and biggest, desire: To allow people like Lowry to live out full lives that they couldn’t before.
First transplant performed using stem cells collected in a military bunker in West Seattle. Cancerous marrow before it was replaced with bone marrow transplant patients opened, bone marrow transplant patients received total-body irradiation — to wipe out their own immune system. Other critical work is also being done in the areas of HIV and infection-related cancers, solid tumors and more. Just as Lowry’s transplant was a starting point for changing medical history, discoveries are being made today at Fred Hutch that will shape the next four decades and beyond. In honor of our 40th year, we invite you to make your own discoveries; read on to find 40 things you probably didn’t know about Fred Hutch.

40 THINGS

Nurses provided at-home care for some early transplant patients
Fred Hutch’s transplant nurses occasionally accompanied their sickest patients home to help get them settled, recalls Judy Campbell, a founding member of Hutch’s nursing staff. “It was generally within the states, but also we had a nurse or two who traveled to other countries to do this,” said Campbell, who retired in 2014 after a 45-year career.

Patients prepped for transplant in a WWII bunker
In the 1980s, before the Hutch had officially opened, bone marrow transplant patients received total-body irradiation — to wipe out their cancerous marrow before it was replaced with healthy marrow — in a former WWII military bunker in West Seattle.

‘Mini’ transplant
Today’s transplant patients receive radiation in state-of-the-art facilities at the University of Washington and Seattle Cancer Care Alliance. Some even get radiation as outpatients, thanks to pioneering work by Dr. Rainer Storb and his colleagues, who developed the “mini” transplant for those who are older or have complications that rule out conventional regimens.

Multiplying cures: Transplants now treat more than 50 diseases
Originally, only certain leukemia and aplastic anemia patients received bone marrow transplants; today the procedure is used to treat dozens of diseases, including autoimmune disorders, sickle cell anemia, myelodysplastic syndromes, and inherited immune-system and metabolic disorders.

Fred Hutch’s lifesaving research inspired one family to establish a national marrow registry
In 1979, Laura Graves, at right, a 12-year-old leukemia patient, was referred to Fred Hutch for a bone marrow transplant. When none of her relatives proved a compatible donor, a Hutch lab member turned up as a match. While the transplant was an initial success, Laura died two years later of a cancer recurrence. Her parents, Dr. Robert and Sherry Graves, went on to establish the National Bone Marrow Donor Registry (now called Be The Match) in 1986.

One oncologist in Uganda — until Hutch partnership
For the past decade, Fred Hutch has partnered with the Uganda Cancer Institute to study and improve treatment of infection-associated cancers, and train researchers and care providers. Before this partnership, there was one oncologist for all of Uganda; now there are 16 oncologists and 70 nurses and support staff. This year, the doors will open on sub-Saharan Africa’s first comprehensive cancer center jointly constructed by U.S. and African cancer institutions.

The writing is, literally, on the wall
At the original location on First Hill, Hutch researchers gathered in hallways and scribbled on walls as they worked through problems. “Ideas would flash fast and furious — and they would just write them on the walls whenever it came to them,” recalls former Fred Hutch board member Jean Roffa.

Provisional therapy for leukemias and lymphomas
Hutch researchers demonstrated for the first time that lab-made antibodies can be used to target radiation specifically to blood cancers and were instrumental in the development of such antibody-based treatments for non-Hodgkin and follicular lymphomas.

1 million gifts for cures
In the past 40 years, more than 300,000 generous donors have made approximately 1 million gifts to Fred Hutch — everything from tribute gifts honoring loved ones and donations of assets like stocks and bonds, to workplace giving. Donors also have participated in fundraising events, attending the Hutch Holiday Gala, climbing mountains, riding in Obliteride, or shopping and dining at all the name of cancer research.

1 million+ transplants
More than 1 million people have received blood stem cell transplants around the globe, all of which trace back to the pioneering work at Fred Hutch. In 1975, Hutch physician-scientists performed roughly 100 transplants per year — about half of all transplants around the world. Today more than 50,000 patients are transplanted annually worldwide, about 50% of whom are treated by our researchers.

Home of the international HIV Vaccine Trials Network
The HVTN is the world’s largest publicly funded, multidisciplinary, international collaboration to develop vaccines to prevent HIV/AIDS. Headquartered at Fred Hutch, it conducts all phases of clinical trials — from evaluating experimental vaccines for safety to testing vaccine efficacy — in over 30 cities on five continents.

Chernobyl hero treated at Fred Hutch
Soviet pilot Anatoly Grishchenko, who developed leukemia in 1986 after his heroic attempt to seal off the burning Chernobyl nuclear reactor using a huge dome suspended from his helicopter, received a bone marrow transplant at Fred Hutch. After Grishchenko died in 1989, flags flew at half-staff around Seattle.

Laura DiLeałe returned to visit Fred Hutch on the 30th anniversary of the bone marrow transplant that cured her acute myeloid leukemia. Here, she is reunited with Dr. Fred Appelbaum, one of those who helped save her life. Photo by Robert Hood / Fred Hutch

Laura DiLeałe visited the Hutch on the 30th anniversary of the bone marrow transplant that cured her acute myeloid leukemia. Here, she is reunited with Dr. Fred Appelbaum, one of those who helped save her life. Photo by Robert Hood / Fred Hutch

Three acres of land purchased for Fred Hutch’s new South Lake Union campus, then the second-largest land acquisition in Seattle history behind Seattle Center

One oncologist in Uganda — until Hutch partnership
For the past decade, Fred Hutch has partnered with the Uganda Cancer Institute to study and improve treatment of infection-associated cancers, and train researchers and care providers. Before this partnership, there was one oncologist for all of Uganda; now there are 16 oncologists and 70 nurses and support staff. This year, the doors will open on sub-Saharan Africa’s first comprehensive cancer center jointly constructed by U.S. and African cancer institutions.
Hutch School: The best school you hope your kids never attend
Established in 1979, Hutch School is the only accredited K-12 school in the U.S. that is attached to a cancer center. It serves approximately 150 students per year—patients and family members of patients receiving treatment.

Exercising for science
Our one-of-a-kind Prevention Center is a scientific laboratory, but not the kind with petri dishes or microscopes. Instead, it houses a state-of-the-art Exercise Research Center staffed by experts who oversee exercise programs tailored for study participants. Since opening in 2001, more than 2,300 volunteers have taken part in studies aimed at working out how lifestyle factors influence cancer risk and prevention.

Three Nobels in physiology or medicine
Dr. E. Donnell Thomas won the Nobel in 1990 for establishing bone marrow transplantation as a successful treatment that has boosted survival rates from nearly zero to 90 percent for certain types of leukemia. Dr. Lee Hartwell, Fred Hutch president and director emeritus and a yeast geneticist, won in 2001 for discovering the universal mechanism that controls cell division, which has revolutionized our understanding of human cancers. Dr. Linda Buck, a Hutch basic scientist, won in 2004 for her discoveries of odorant receptors and the organization of the system that governs the sense of smell.

Rodin, Ansel Adams and more
Fred Hutch houses a collection of more than 450 works of art, including pieces by French sculptor Auguste Rodin, glass artist Dale Chihuly and American expressionist Morris Graves. The family of former Hutch patient Frederick Kulfman also donated signed 20th century black-and-white photography masterworks by Ansel Adams, W. Eugene Smith, Edward Weston and Henri Cartier-Bresson, among others. Native American glass artist Preston Singletary, whose studio is located on our campus, loaned 25 pieces from his private collection to the Hutch.

Walking and remember
Every day, Hutch employees pass through the Mumble Courtyard, surrounded by the Thomas, Weintraub and Hutchinson buildings, where hundreds of special messages are engraved in bricks and stones to honor and memorialize loved ones—a poignant reminder of why we do what we do.

'Freeze farm' preserves thousands of specimens
More than 1,000 freezers full of biological samples occupy our “Freezer farm.” Backups are always on ready, if a freezer’s on the fritz, facilities engineers are on duty 24/7 to help rush the priceless contents into temperature-prove spaces.

We don’t swat fruit flies, we study them
Fred Hutch cell biologist Dr. Mark Roth made headlines in 2005 when he put mice into a state of reversible suspended animation by exposing them to minute amounts of hydrogen sulfide. He went on to receive a MacArthur “genius” award. One day the technique may be used to slow metabolism and buy time for critically ill patients.

Lipstick on a fish
Dr. Katsu Yoshida, a Hutch geneticist who studies thrip sperm backspin fish to understand complex genetic traits, once tried to put lipstick on the fish to test whether male fish prefer to mate with males that have red versus black throats.
A living memorial: Brothers Bill and Fred Hutchinson shared a lasting bond

They were 10 years apart in age and took different paths in life. But the two brothers had a bond like few others.

Bill and Fred Hutchinson grew up together in Seattle, both standout baseball players with prospects in the major leagues. But while Bill, a third baseman and captain of his University of Washington team, chose to follow their father into medicine and became a surgeon, the younger Fred jumped at the chance to pitch professionally into medicine and became a surgeon, the younger Fred jumped at the chance to pitch professionally

Although their divergent paths took them more than 2,000 miles apart, Bill was still the person Fred turned to when he found lumps in his neck and upper chest in 1963. It was lung cancer, and Bill brought Fred to Seattle for treatment. But Fred, with advanced disease, died in 1964 at age 45.

Fred Hutchinson Cancer Research Center stands as a living memorial and a testament to the profound connection between the two brothers.

Every year, Fred Hutch supporters gather at the Hutch Award Luncheon to raise money for cancer research and to bestow the Hutch Award on the Major League Baseball player who most embodies Fred’s fighting spirit and competitive desire. While the award, which was established by sports writers the year after Fred’s death, honors his great impact on the sport to which he dedicated his life, the event also carries on Bill’s legacy of honoring his beloved brother through research.

Over the past 15 years, the Hutch Award Luncheon has raised more than $9.3 million to support research aimed at overcoming diseases.

50 years of the Hutch Award

The Hutch Award® was created in 1965 in honor of the late Fred Hutchinson, the courageous and inspirational former Major League Baseball player and manager, who died of cancer one year earlier at the age of 45. The Hutch Award is now presented annually by Fred Hutchinson Cancer Research Center to a Major League Baseball player who best exemplifies the honor, courage and dedication of Fred Hutchinson.

PAST WINNERS

Past winners include这样的人...
Five Fred Hutch scientists talk about 40 years of changes, challenges — and why research matters

By Mary Engel

Q: How did each of you get started in research?

DR. KIRANJIT DHILLON: I originally wanted to go into medicine. To get clinical experience, I ended up working in a hospital as a phlebotomist for a couple of years. One of the things that it made me aware of really quickly was I wasn’t sure how I liked being around sick people, which is a really horrible thing for a physician. But I loved studying human disease. So to me the obvious choice was research, and that took me down this path. I wanted to help people. Ultimately that’s what drives all of us. With research, we hope that instead of working with one patient at a time, we might contribute to something that might have a broader impact.

DR. DENISE GALLOWAY: It’s funny, I started doing phlebotomy also when I was in college. Then I started taking some classes and found I really liked working in the lab, trying to make discoveries, little minute discoveries, one at a time. I just found the lab was the right environment for me.

DR. KATHI MALONE: I might have taken the most circuitous route to research. My parents didn’t believe girls should go to college, and there were also financial barriers. When the nun who taught Latin at this all-girls school heard that I wasn’t going to college and [that] I was a National Merit semifinalist, she went to my parents and basically said, “This is crazy.” So I was allowed to go to college. Then when I went to college, it was like, what were the professions women go into? Teaching, nursing, social work. So I thought, “Social work.” And the day I graduated I thought, “Oh, this is so not what I want to do.”

I was sort of in love with medicine, but at a distance. So I went the pre-med route. I was taking history of medicine, and this instructor starts showing all these slides of correlations between exposures and disease, and that was the most fun I’d had in a long time. I said, “I’d love to do this for a living.” He said, “Have you heard the word ‘epidemiology’?” And that changed everything for me. Now I would do this for free. And I actually think all of you would too.

DR. FRED APPELBAUM: I was sort of in love with medicine, but at a distance. So I went the pre-med route. I was taking history of medicine, and this instructor starts showing all these slides of correlations between exposures and disease, and that was the most fun I’d had in a long time. I said, “I’d love to do this for a living.” He said, “Have you heard the word ‘epidemiology’?” And that changed everything for me. Now I would do this for free. And I actually think all of you would too.

How did each of you get started in research?

DR. KIRANJIT DHILLON: I originally wanted to go into medicine. To get clinical experience, I ended up working in a hospital as a phlebotomist for a couple of years. One of the things that it made me aware of really quickly was I wasn’t sure how I liked being around sick people, which is a really horrible thing for a physician. But I loved studying human disease. So to me the obvious choice was research, and that took me down this path. I wanted to help people. Ultimately that’s what drives all of us. With research, we hope that instead of working with one patient at a time, we might contribute to something that might have a broader impact.

DR. DENISE GALLOWAY: It’s funny, I started doing phlebotomy also when I was in college. Then I started taking some classes and found I really liked working in the lab, trying to make discoveries, little minute discoveries, one at a time. I just found the lab was the right environment for me.

DR. KATHI MALONE: I might have taken the most circuitous route to research. My parents didn’t believe girls should go to college, and there were also financial barriers. When the nun who taught Latin at this all-girls school heard that I wasn’t going to college and [that] I was a National Merit semifinalist, she went to my parents and basically said, “This is crazy.” So I was allowed to go to college. Then when I went to college, it was like, what were the professions women go into? Teaching, nursing, social work. So I thought, “Social work.” And the day I graduated I thought, “Oh, this is so not what I want to do.”

I was sort of in love with medicine, but at a distance. So I went the pre-med route. I was taking history of medicine, and this instructor starts showing all these slides of correlations between exposures and disease, and that was the most fun I’d had in a long time. I said, “I’d love to do this for a living.” He said, “Have you heard the word ‘epidemiology’?” And that changed everything for me. Now I would do this for free. And I actually think all of you would too.

Write to Mary Engel at mengel@fredhutch.org

Researchers ranging from veterans to early-career investigators, left to right:

DR. MATTHIAS STEPHAN (arrived in 2012) is an expert in immunobiology/engineering, an emerging field that blends immunology and engineering to make materials used in treatments for cancer and other diseases.

DR. DENISE GALLOWAY (1978), whose research, which demonstrated the link between human papillomavirus (HPV) and genital-tract cancers, paved the way for the HPV vaccine.

DR. FRED APPELBAUM (1978), Fred Hutch deputy director and executive vice president, is a world authority on blood cancers.

DR. KATHI MALONE (1993) is an epidemiologist who studies the origins and outcomes of breast cancer.

DR. KIRANJIT DHILLON (2008), a postdoctoral fellow in Fred Hutch’s Taniguchi Lab, focuses on why tumors become resistant to chemotherapy.

Researchers ranging from veterans to early-career investigators, left to right:

DR. MATTHIAS STEPHAN (arrived in 2012) is an expert in immunobiology/engineering, an emerging field that blends immunology and engineering to make materials used in treatments for cancer and other diseases.

DR. DENISE GALLOWAY (1978), whose research, which demonstrated the link between human papillomavirus (HPV) and genital-tract cancers, paved the way for the HPV vaccine.

DR. FRED APPELBAUM (1978), Fred Hutch deputy director and executive vice president, is a world authority on blood cancers.

DR. KATHI MALONE (1993) is an epidemiologist who studies the origins and outcomes of breast cancer.

DR. KIRANJIT DHILLON (2008), a postdoctoral fellow in Fred Hutch’s Taniguchi Lab, focuses on why tumors become resistant to chemotherapy.
"I would do the same experiment one day and the next day and the next, and my media wasn’t quite right, or I didn’t pick the right pet, or my culture got infected. It was just so frustrating.

MALONE: We have the equivalent of that in my world — like, we didn’t ask the survey question the right way.

GALLOWAY: Then’s part of lab work that’s just a slog. You have to do it over and over and over.

DHILLON: But when it finally works, there’s nothing like it. And that keeps you going for a long time.

Which leads me to the question: How do you deal with setbacks and disappointments?

DHILLON: You brought up this question at an interesting point. We were looking at a set of ovarian tumors that we got from a clinical collaborator, trying to identify some kind of pattern that we can associate with [treatment] resistance. And there’s so much noise [irregularities that muddy the real data] in the clinical samples, that it’s just devastating — personally devastating — that we can’t use this set. We’re scientists, we’re not supposed to think too much about this, but it breaks my heart to think about the HD patients who donated these samples.

MALONE: This is related to how I feel when I processed it. I’m trying to understand what the noise means.

DHILLON: It’s got to be some kind of technical thing. We’re trying to identify the source. We’ve spent months on it.

APPELBAUM: In our research laboratory particularly, we’re seeing in melanoma — and in some cases of lung cancer and bladder cancer — are truly enduring. These patients may well be cured or enjoy very long remissions. I’m not doing the work myself, I’m trying to facilitate it, so that it can happen. It just gets me up every day.

MALONE: That’s the area that’s been getting me up in the morning is looking at outcomes after breast cancer, specifically recurrences and second primary cancers. Sixteen percent of the cancers reported in the national SEER system [Surveillance, Epidemiology and End Results Program of the National Cancer Institute] are second primaries.

APPELBAUM: Sixteen percent now? Wow.

MALONE: Some of that is because, as survival has improved, people now have longer lives and the opportunity to get second cancers. If you know that certain modifiable lifestyle factors could reduce your risk of that second primary — and we’re pretty sure that’s true — being a cancer patient might put you in a better position to [make changes]. This gets back to the question [Denise] raised: How do you get people to make changes?

STEPHAN: I’m excited about developing technologies to apply T-cell therapy, make it affordable so it can be developed and produced and distributed just like chemotherapy [rather than] customized for every patient. I know that to have a chance your life is a purpose. When I was about 12 or 13, it was the first HIV case. I thought, ‘Oh, I’ll find a cure for HIV!’ And then I became aware of the whole cancer field, and so I didn’t decide, do I want to cure HIV or cancer? When I went to medical school, I worked with HIV patients. I didn’t ultimately go into HIV research because it was too just too complicated. It was a rotation, so we started seeing cancer patients. Back then gene therapy was a big field, and I felt there was more potential for developing gene therapy for cancer.

APPELBAUM: AIDS was too complicated so you picked gene therapy for cancer? Just checking.

What challenges did you face when you were starting out, compared to now?

GALLOWAY: When I look back, the challenges were technical. You just couldn’t do many of the things you can do today. You had an idea of something you would like to investigate, but you didn’t have the tools to do it. Now it’s a completely different set of challenges. It’s hard to get a job. It’s hard to get funded.

STEPHAN: Did you know back when you started about the whole funding issue?

GALLOWAY: I never really worried about money, until recently. I just thought, ‘Ah, top 30 percent, I can end up there.’

What percentage of grant applications get funded now?

GALLOWAY: Seven or 8 percent is the funding level for cancer.

APPELBAUM: In some ways, it was the best of times and the worst of times. People have said, ‘Could Don have invented transplantation if he had to do it today, with the regulatory environment, with how hard it is to write a clinical trial, the number of committees it has to go through?’ On the other hand, our patients were so sick. It was just emotionally so hard to put them through the pain and suffering of the transplants at that time. Imagine trying something and it failing 10 times in a row. It was easier to write the trials, it was easier to get them going, it was easier to get funding. But it was devastatingly hard to conduct them.

MALONE: You probably didn’t have the kind of supportive measures for the patients that could make the experience less horrible.

APPELBAUM: One of the reasons that survival in treating leukemia has improved is we have antivirals, antifungals. Back then when you’d give chemotherapy to a patient with acute myeloid leukemia, they would be vomiting their guts out for days. If you’re older and weak and you’re throwing up constantly, you aspirate, you get pneumonia, and that can be fatal. It’s not any picnic, and it’s much easier. Supportive measures have come from other disciplines — antivirals, pain medications, antifungals, antinaives. Funding is a lot harder. But there are things that are a bit better, too.

STEPHAN: One of the questions I have is, in 30 years, when we publish something, say a correlation between a particular diet and cancer risk, do people listen, do they change their diet?

MALONE: Overcoming behavior challenges in humans is not an easy thing. Much more work is needed to identify effective strategies.

GALLOWAY: One of the things about doing basic science is when you make these [discoveries] and then a company develops a vaccine, you think, that’s a fantastic problem solved. Well, the problem is that people don’t take the vaccine. And that’s totally out of my realm where I can do anything about it. It’s so frustrating that logically you have such a great vaccine and now you have to deal with human nature and with the lack of a single-payer system in the U.S., all the problems of the real world.

Which gets you up in the morning? What are you waking up excited about coming in and doing?

GALLOWAY: The HPV vaccine is currently given as three doses. The World Health Organization has just recommended that you could reduce that to two doses. There really aren’t a lot of studies that tell you whether that’s adequate or not. We’re looking at the memory B cells that are made in response to vaccination. If we can learn about the immune response, we could address the question whether or not two versus three [doses] give you the same immune memory. I’m really excited to know the answer to that.

APPELBAUM: The thing that I’m so excited about is to see if we really can take what now appears to be our ability to engineer T cells and combine it with things that take the brakes off the immune system to make a difference in solid tumors. I am really hopeful that immunotherapy is going to be the mainstay of cancer treatment in 10 years for metastatic cancer because it’s so much safer, so much less toxic. And some of the responses that we’re seeing in melanoma — and in some cases of lung cancer and bladder cancer — are truly enduring. These patients may well be cured or enjoy very long remissions. I’m not doing the work myself, I’m trying to facilitate it, so that it can happen. It just gets me up every day.

GALLOWAY: Then’s part of lab work that’s just a slog. You have to do it over and over and over.

DHILLON: But when it finally works, there’s nothing like it. And that keeps you going for a long time.

What are you waking up excited about coming in and doing?

GALLOWAY: The HPV vaccine is currently given as three doses. The World Health Organization has just recommended that you could reduce that to two doses. There really aren’t a lot of studies that tell you whether that’s adequate or not. We’re looking at the memory B cells that are made in response to vaccination. If we can learn about the immune response, we could address the question whether or not two versus three [doses] give you the same immune memory. I’m really excited to know the answer to that.

APPELBAUM: The thing that I’m so excited about is to see if we really can take what now appears to be our ability to engineer T cells and combine it with things that take the brakes off the immune system to make a difference in solid tumors. I am really hopeful that immunotherapy is going to be the mainstay of cancer treatment in 10 years for metastatic cancer because it’s so much safer, so much less toxic. And some of the responses that

Clinical researchers report first successful use of expanded umbilical cord blood units to treat leukemia

Find Hutch researchers to discuss results of 2011 HPV vaccine trial on melanoma and cervical cancers

Chinese Center for Disease Control and Prevention and Fred Hutch open an agreement to begin collaborating on research, training projects in China and the U.S.

Surveillance, Epidemiology and End Results Program of the National Cancer Institute

The Hutch is selected to lead $20 million, federally funded research project to explore potential cure for HIV infection using stem cell transplantation

2010

2011

2010

2011

DHILLON: You brought up this question at an interesting point. We were looking at a set of ovarian tumors that we got from a clinical collaborator, trying to identify some kind of pattern that we can associate with [treatment] resistance. And there’s so much noise [irregularities that muddy the real data] in the clinical samples, that it’s just devastating — personally devastating — that we can’t use this set. We’re scientists, we’re not supposed to think too much about this, but it breaks my heart to think about the HD patients who donated these samples.

MALONE: This is related to how I feel when I processed it. I’m trying to understand what the noise means.

DHILLON: It’s got to be some kind of technical thing. We’re trying to identify the source. We’ve spent months on it.

APPELBAUM: In our research laboratory particularly, we would do the same experiment one day and the next day and the next, and my media wasn’t quite right, or I didn’t pick the right pet, or my culture got infected. It was just so frustrating.

GALLOWAY: We have the equivalent of that in my world — like, we didn’t ask the survey question the right way.

DHILLON: Then’s part of lab work that’s just a slog. You have to do it over and over and over.

DHILLON: But when it finally works, there’s nothing like it. And that keeps you going for a long time.

Which leads me to the question: How do you deal with setbacks and disappointments?

GALLOWAY: You brought up this question at an interesting point. We were looking at a set of ovarian tumors that we got from a clinical collaborator, trying to identify some kind of pattern that we can associate with [treatment] resistance. And there’s so much noise [irregularities that muddy the real data] in the clinical samples, that it’s just devastating — personally devastating — that we can’t use this set. We’re scientists, we’re not supposed to think too much about this, but it breaks my heart to think about the HD patients who donated these samples.

MALONE: This is related to how I feel when I processed it. I’m trying to understand what the noise means.

DHILLON: It’s got to be some kind of technical thing. We’re trying to identify the source. We’ve spent months on it.

APPELBAUM: In our research laboratory particularly, we would do the same experiment one day and the next day and the next, and my media wasn’t quite right, or I didn’t pick the right pet, or my culture got infected. It was just so frustrating.

GALLOWAY: We have the equivalent of that in my world — like, we didn’t ask the survey question the right way.

DHILLON: Then’s part of lab work that’s just a slog. You have to do it over and over and over.

DHILLON: But when it finally works, there’s nothing like it. And that keeps you going for a long time.
Fred Hutch researcher discovered molecular underpinnings of a form of muscular dystrophy; how to break through a pancreatic cancer treatment barrier; and immune responses that correlate with protection in the “Thai trial,” the first HIV vaccine trial to show protection.

Dr. E. Donnall Thomas, “father of bone marrow transplantation,” dies at 92; around 1 million worldwide have undergone the procedure.

2012
Fred Hutch, Seattle Children’s Research Institute and Memorial Sloan Kettering Cancer Center join forces to launch Juno Therapeutics Inc.

FORMATION OF SOLID TUMOR TRANSLATIONAL RESEARCH CENTER
The Bezos family donates $20 million for immunotherapy research.

2013
Fred Hutch, Seattle Children’s Research Institute and Memorial Sloan Kettering Cancer Center join forces to launch Juno Therapeutics Inc.

2014
Hutchinson Institute for Cancer Outcomes Research launched.

Hutchinson Institute for Cancer Outcomes Research launched.

2012

TOP PHOTO ON THIS PAGE: Dr. Hal Weintraub works with a pipette under the hood in the third floor tissue culture lab in 1993, in the building that would later bear his name.

BOTTOM PHOTO ON THIS PAGE: Batta Thomas attends the Nov. 3, 2012 memorial for Fred Hutch for her husband, Dr. E. Donnall Thomas, along with (left to right) Dr. Rainer Storb, Travis Ballatin and Alapina Wolfe.

LARGE PHOTO ON RIGHT PAGE: A worker forms the cement foundation for the Fred Hutch time capsule in the Listwin Courtyard between the Hutchinson and Weintraub buildings on June 1, 1993.

To see more Then/Now photos, visit fredhutch.org/then-now

Then/Now photos highlight change and how we can build on the past, both the triumphs and the disappointments, to rise even higher.
‘He was my dad’

A son remembers Fred Hutchinson: the legend and the man
By Linda Dahlstrom

THE HANDS ARE WHAT JOE HUTCHINSON NOTICES FIRST.

Standing before a photo collage on the campus of Fred Hutchinson Cancer Research Center, named for his father, the Major League Baseball player and manager, he looks past the photos of his dad posing with celebrities and perches on one in the lower right-hand corner. In it, a young Joe sits beside his father, his dad’s hand covering his.

“My dad had huge hands,” he remembers, noticing that in the photo he’s also wearing his father’s cufflinks.

While the world knew Fred Hutchinson from his baseball career, and then later as the namesake of the research center, Joe knew him simply as his father. Decades after “Hutch” died in 1964 at age 45, the personal details are what stand out to him.

“He was not like the persona of the guy you saw on the [baseball] field — the fiery type guy,” he remembers of his dad, who was nicknamed “The Bear.” “He was really very quiet and gentle. He was my dad. I never really gave it much thought.”

Despite his father’s baseball career, “we just had a normal childhood,” says Joe, now 61. Sometimes the family would go to Fred’s games. “We’d ride home together after and sometimes it was good, other times it was not so good. He was a competitive guy.”

In 1963, while he was managing the Cincinnati Reds, Fred developed a lump in his neck. His brother, surgeon Dr. Bill Hutchinson, brought him to Seattle to biopsy it. Fred was diagnosed with lung cancer and died the following year on Nov. 12, 1964.

Devastated, Joe remembers his family members trying to go about their daily lives despite the vast hole that had opened in the center. But into the void stepped Uncle Bill, who assumed a fatherly role with Fred’s kids, Joe, Rick, Jack and Patty Jo.

“I remember him totally consumed with his work, but when he came home he was very involved in everyone’s life,” says Joe, who was 10 when his dad died. “Uncle Bill was just that kind of person. He didn’t have a lot of vanity when it came to himself — but he was bound and determined to beat cancer.”

To that end, he founded Fred Hutchinson Cancer Research Center as a living memorial to his brother.

On a fall afternoon 50 years after his dad died, Joe stood looking at Fred’s uniform in a case. Then he walked around the Hutch campus, crossing a courtyard of bricks bearing messages in tribute of others’ loved ones, to research labs where scientists are making discoveries that change how cancer is treated, detected and prevented. All of these things were born out a brother’s love and dedication.

“It’s overwhelming what’s been done and how much it’s progressed and how many lives it’s touched,” he says. “It’s like science fiction. It’s like going to the moon.”

Joe Hutchinson pauses below a portrait of his father, Fred, during a recent visit to the research center.

To see a video interview with Joe Hutchinson, visit: fredhutch.org/joehutchinson

When the doors of Fred Hutch opened in 1975, we were honored to have the support of more than 1,200 benefactors — visionary donors willing to invest in a new but promising organization and a future free from cancer. In just the past year, more than 33,000 such visionaries partnered with us.

To the more than 300,000 individuals and organizations who have so generously contributed to the Hutch over the past four decades to start new cures, we extend our most heartfelt gratitude. On behalf of our scientists and staff, and especially the millions of patients and families around the world whose lives have been touched by the work you made possible,

THANK YOU.
Two brothers, one goal, 40 years of cures

Dr. Bill Hutchinson, left, and his brother Fred (shown with their families) were so close that when Fred died of lung cancer at the age of 45, Bill resolved to create an institution dedicated to ending cancer through research and named in honor of the brother he loved. Fred Hutchinson Cancer Research Center opened in 1975. That enduring gift — born of loss but fueled by the unrelenting determination of its founders, researchers, patients and supporters — has brought hope and cures to families in Seattle and around the world for four decades. And counting. See story inside.

To help start the next 40 years of cures today, please give through the enclosed envelope or visit fredhutch.org/give.